37] ON THE ROTATION OF A SOLID BODY ROUND A FIXED POINT.
249
whence
and therefore
Next, to find
{observing
where
(a, /cot)
by equations (29),
that is
Also
whence
or putting v = v 0 ,
and therefore also
{(h, e)} = — 2,
(h, e) = — 2 (52).
(a, 8), (b, 8), (c, 8), (h, 8),
S = 2tan -i‘g--k[ (h + % du ,
2k J vV
= 8' + 8" suppose,
(a, 8) = (a, 8') +(a, 8")»
, ^ k , , , ,, d8'
(a, 8) = — (a, /cot) + (a, k) ,
/c 2 ot 2 + 4>k 2 = 4 (il 2 + & 3 ) = 4kv]
= —(a, /cot),
KV
= i { ( 1 + A 2 ) (kv + 2Aot) — ( Aw 4- ot) /cA
+ (\/x — v) (kv + 2/¿ot) — ( Xv + w) K/JL
+ (v\ + fi) (kw + 2vu ) — (— v + Aw) kv }
= | k (u + Aot) = Ap — vBq + (¿Cr + Ail = \ (a + Ap) k (53),
(33), and (10) ;
( a > &) = ^ J (* + A P)-
(a, 8") = - k ^ (a, v) + (a, b) ^ + &c.
= -1 k (hCr - cBq) + Fv - Fv 0t
(a, 8) = ^ {a + Ap- (bCr - cBq)} + Fv - Fv 0 ,
(a, 8)=A {a + ^ o _^+^ ( bGr 0 -c% 0 )} (54),
(b, 8) = A {b + Bq 0 - (cAp 0 - aGr 0 )},
(c, 8) = A (c + Cr 0 - h t.^ (aBq a - bAp 0 )}.
ZVq v 0
C.
32