Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 1)

252 ON THE ROTATION OF A SOLID BODY ROUND A FIXED POINT. 
[37 
and therefore 
da dF . dV 1 .. „ „ . dF k , . /i + ^o/i T1 m dV 
di~~ C db + h ~dc~V 0 ( ' hCr °~ cBq °Ì ~(te + 2v 0 ^ + Ap ° ~ ~V7~ (b Cr ° ~ cBq °tì dS ’ 
db dV dV 1 , . n N dF k ,, „ h 4- i> 0 , . „ dV 
~ y- ( c 4Po - &Cr 0 ) + 2do l b + Bq 0 (cAp 0 - aCV 0 )} ^ , 
dt a dc C da 
dS 
dc , dF dF 1 / „ , . x dF k , ~ /& + <£»„, T > 1 y m dF 
_ _b ^- + a ^ (a5? 0 - b^ 0 ) ^ ^ {c + CV 0 - —(a% - b ^o)} ¿g-, 
dt 
dh 
= — 2 — , 
dt de ’ 
de 
dF 
dF 
dF 
^ = vT1 ( hGr o ~ cBr lo) fa + (cAp 0 - aBq 0 ) + (aBq 0 - bAp 0 ) ^-¡- + 2^ 
di V 
dS _ A; 
di 2t/ 0 
db 
dc 
dF & dF 
d^ V n dS 
{a + 4p 0 - ° (bC'n - oB? 0 )} ^ 
+ {b + - ^—° (cAp 0 —a(7r 0 )} ^ 
+ {c + Gr 0 - ^ (a% 0 - b4j%)} ^ 
+ 
k_ dV 
V u de ’ 
(62), 
to which we may join 
dk dV 
dt dS ' 
.(63). 
We have thus the complete system of formulae.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.