Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 1)

278 
ON THE DIFFERENTIAL EQUATIONS 
[43 
or, reducing, 
1 1V7 fdA dA' \ 7 (dB dB' , 7 . 
V <iV + (s + W + ••■) &+ (a7 + AT + •••)*/ +••• = 0; 
K du dv 
whence separating the differentials and replacing A, A', ...; 5, B', by their values 
1 dV d du d dv 
V dx du‘ dx dv' dx~ '" ’ 
1 clV d d a d dv _ ^ 
V dy du'dy dv' dy ’ 
(in which — V, u, v ... ; x, y ... may be substituted for V, x, y ... ; u, v ...). 
§ 2. Let X, Y... be any functions of the variables x, y, ... and assume 
7 r , r du ,, du 
U = X — + Y + 
dx dy 
y _ v 4- V dv 1 
1 ~ X Tx +Y dy + '"’ 
U, V, ... being expressed in terms of u, v, .... Then 
dU^dV + _ y / d du d dv \ y / d du d dv 
du dv "' " \du'dx dv'dx "') \du' dy dv dy ^ 
+ I'dX du ^ dX dv \ fdY du dY dv 
du ' dx dv ' dx "'] \du ' dy dv ' dy 
i.e. 
^7 [dU dV \ / dV „dV \ _ fdX dY 
y l - IX— +F — + ...) +V( — + — + 
. du dv 
dx 
dy 
dx dy 
Also, whatever be the value of M, 
TT dMV Tr dMV 
ii T;- + F ir + 
and from these two properties, 
dMVU dMVV 
du dv 
v di¥V dJ/V 
„ fdMX dMY 
= Vi T + ^ + - 
§ 3. Consider the system of differential equations 
dx : dy : dz ... = X : Y : Z ... 
(where, for greater clearness, an additional letter z has been introduced). From these 
deduce the equivalent system 
we 
du : dv : dw ... = JJ : V : W ... .
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.