278
ON THE DIFFERENTIAL EQUATIONS
[43
or, reducing,
1 1V7 fdA dA' \ 7 (dB dB' , 7 .
V <iV + (s + W + ••■) &+ (a7 + AT + •••)*/ +••• = 0;
K du dv
whence separating the differentials and replacing A, A', ...; 5, B', by their values
1 dV d du d dv
V dx du‘ dx dv' dx~ '" ’
1 clV d d a d dv _ ^
V dy du'dy dv' dy ’
(in which — V, u, v ... ; x, y ... may be substituted for V, x, y ... ; u, v ...).
§ 2. Let X, Y... be any functions of the variables x, y, ... and assume
7 r , r du ,, du
U = X — + Y +
dx dy
y _ v 4- V dv 1
1 ~ X Tx +Y dy + '"’
U, V, ... being expressed in terms of u, v, .... Then
dU^dV + _ y / d du d dv \ y / d du d dv
du dv "' " \du'dx dv'dx "') \du' dy dv dy ^
+ I'dX du ^ dX dv \ fdY du dY dv
du ' dx dv ' dx "'] \du ' dy dv ' dy
i.e.
^7 [dU dV \ / dV „dV \ _ fdX dY
y l - IX— +F — + ...) +V( — + — +
. du dv
dx
dy
dx dy
Also, whatever be the value of M,
TT dMV Tr dMV
ii T;- + F ir +
and from these two properties,
dMVU dMVV
du dv
v di¥V dJ/V
„ fdMX dMY
= Vi T + ^ + -
§ 3. Consider the system of differential equations
dx : dy : dz ... = X : Y : Z ...
(where, for greater clearness, an additional letter z has been introduced). From these
deduce the equivalent system
we
du : dv : dw ... = JJ : V : W ... .