291
45] ON THE THEORY OF ELLIPTIC FUNCTIONS,
or writing — u for u and subtracting, yjr^u being an even function,
2Au = iri — (iK' — u) + k 2 ^ // (iK' + u),
or putting u = K,
2AK = iri — (iK 7 — K) + lc 2 'yjr // (iK' + K).
Now sn 2 (u + K) — sn 2 (u — K) = 0,
and therefore \Jr / (u + K) — ■\fr / ( u — K) = 2 ,
// ( w + #) - ir„ ( w -K) = 2u ;
or O'iT + if)~ ^ (iZ 7 - K) = 2iK'±K.
Also i? (u) = u —
or
E = K-k^K, i.e. =
Hence
¿-urii-£)+*,
log sn xi = kFJr lf u - kFf-,, (u + iK’) + uiK’ 0 - ^ + B
= ***„« - k^„ (u + iK') + i [(« + iKy - vF] (l - |) +
i.e.
log sn m = log © (u + iK') — log ©w + + B',
or, changing the constant,
sn u
_ C( M-®(u + iK')
©m
Now, to determine (7, write u — iK’ for u; this gives
1 _ r( M {u - iK ' ] ©w
k sn u © (u - iK) ‘
and again changing n into — u,
— sn u
_ Cc S®(u-iK') :
&u
whence, multiplying these last two equations,
_ TtK'
k
+ B\
37—2