Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 1)

45] 
ON THE THEORY OF ELLIPTIC FUNCTIONS. 
295 
Assume now in the equation (6), 
Hence, substituting, 
cP 
E\ d 
d ~ 2 (® n u . z) - 2nu (k' 2 - K j du (<ò n u. z) + 2nkk' 2 (KV)- w ^ [(Kk')~% n u.z] = 0 ; 
but 
<**)*a M ®”» • *] - a (e ”“ •- y ~w ®““ • *• 
d®u 
or effecting the differentiation, and eliminating by means of the equation obtained 
from (4) by writing 2 = ©», 
d 
(.Kkj^ dk [{Kk'Y^-v . ¿\ 
= 
2kk' 2 ©m [ d 
Substituting in (6) and reducing, 
(h _ nz id 2 ©w ^ / ^'2 A’X d ©m] w — 1 y 
K) du \ + 2kk' 2 
E 
K 
d 2 z 
did 
+ 2 n 
jL^©w_ / ^ 
©n du V K 
~ + 2 nkk' 2 — 
du dk 
, „ (n _ ix if 1 _ JL 
( _© 2 ?ì V du ) %u du 2 
+ ' 1 ~ K ) < z = 
i.e. 
But 
whence 
dPz 
dip 
+ 2 n 
~rf log %u f E 
du “r K 
+ n (n — 1) 
~ +2 nkk’ 2 % 
du dk 
d 2 log ©w E 
dii 2 
K 
z = 0. 
du 2 
K 
d 2 ^ 
du 2 
dz 
dz 
+ 2nk 2 (f 0 du cn 2 -a) + 2nkk' 2 -j^+n(n—l)k 2 sn 2 u.z = 0 (7) ; 
which is therefore satisfied by 
^ i2Kk'\ * (n-1) ©,?im 
V 7T / 
© ? fi< 
£ = 
[2Kk'\ * (n_1) 
V 7T 
© n it
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.