45]
ON THE THEORY OF ELLIPTIC FUNCTIONS.
295
Assume now in the equation (6),
Hence, substituting,
cP
E\ d
d ~ 2 (® n u . z) - 2nu (k' 2 - K j du (<ò n u. z) + 2nkk' 2 (KV)- w ^ [(Kk')~% n u.z] = 0 ;
but
<**)*a M ®”» • *] - a (e ”“ •- y ~w ®““ • *•
d®u
or effecting the differentiation, and eliminating by means of the equation obtained
from (4) by writing 2 = ©»,
d
(.Kkj^ dk [{Kk'Y^-v . ¿\
=
2kk' 2 ©m [ d
Substituting in (6) and reducing,
(h _ nz id 2 ©w ^ / ^'2 A’X d ©m] w — 1 y
K) du \ + 2kk' 2
E
K
d 2 z
did
+ 2 n
jL^©w_ / ^
©n du V K
~ + 2 nkk' 2 —
du dk
, „ (n _ ix if 1 _ JL
( _© 2 ?ì V du ) %u du 2
+ ' 1 ~ K ) < z =
i.e.
But
whence
dPz
dip
+ 2 n
~rf log %u f E
du “r K
+ n (n — 1)
~ +2 nkk’ 2 %
du dk
d 2 log ©w E
dii 2
K
z = 0.
du 2
K
d 2 ^
du 2
dz
dz
+ 2nk 2 (f 0 du cn 2 -a) + 2nkk' 2 -j^+n(n—l)k 2 sn 2 u.z = 0 (7) ;
which is therefore satisfied by
^ i2Kk'\ * (n-1) ©,?im
V 7T /
© ? fi<
£ =
[2Kk'\ * (n_1)
V 7T
© n it