62]
383
62.
ON AN INTEGRAL TRANSFORMATION.
[From the Cavibridge and Dublin Mathematical Journal, vol. ill. (1848), pp. 286—287.]
The following transformation, given for elliptic functions by Gudermann (Crelle,
t. xxiii. [1842], p. 330) is useful for some other integrals.
dbc — dba — dca + abc — (be — ad) z
(be — ad) + (d—b — c +a) z ’
K = (be — ad) + (d — b — c + a) z,
we have, supposing a <b < c < d, so that (b — a), (c — a), {d — b), (d — c) are positive,
K (y — a) =(b — a) (c — a) (d — z),
K (y - b) = (b - a) (d - b) (c - z),
K (y - c) = {c - a) {d - c) (b - z),
K (y — d) = (d — b) (d— c) (a — z),
K 2 dy = — (6 — a) (c — a) (d — b) (d — c) dz.
In particular, if a + ¡3 + <y + 8 = — 2,
(y — a) a (y — by (y — c)y (y — d) 8 dy = — M(z — a) s (z — by (z — c) p (z — d) a dz,
where M=(b — a) a+fi+1 (c — a) a+ y +1 (d — by +s+1 (d — c)* +5+1 .
Thus, if a = /3 = 7 = S = — L
{- (V ~a)(y~ 0 (V -c){y- djy ~ {-(z-a) (z -b)(z- c) (z - d)}*'
In any case when y = a, y = b, the corresponding values of £ are z = d, z — c\ the
last formula becomes by this means
f b dy _ C d dy
L {- (y ~ a) (y ~ 8) (y -c)(y- d)^ ~J c {-(z-a)(z-b)(z- c) (z - d)]* ‘
If
then, putting