G8] ON THE APPLICATION OF QUATERNIONS TO THE THEORY OF ROTATION. 409
but I have not ascertained whether this formula leads to any results of importance.
It may, however, be made use of to deduce the following property of quaternions, viz.
if A 1 — ilfjA'A, M 1 as before, then
1
Ki
d-A x
dt
A j +
1 /_ d A . d/c\
A 2 M A+ Tt)
in which the coefficients of A' are considered constant.
To verify this a posteriori, if in the first place we substitute for k x its value
M f/e/d, we have
d/Ci _ M 2 / d/c 2 dM 1
dt ~ K Tt + M] ~dt Kl ’
and thence
Also
dAi . 1 dM x -.j. , dA .
dt k ' + v t ~d* *-* '-&*■
dA2 . /1 CLlHi . n/r \ / CLi\\ , I Hum.2 . „ 7ii-„ a / w-n. . , .
— ( U ~~J7 + M X A ) Aj = T/f -jj- A,- + M x A A A,
1 dMi
M, dt
/ dA
dt
1 dil/j A „
ilfi d.t
/ dA A ,
dt
which reduces the equation to
1 dd/i 7i / o a / dA , ,j dA
1/2 di (Al " + ^ + i/r A It AA ~ MfKl dt A ’
Hence observing that
A1 2 + *i = 2Aj = 2M 1 A , A,
and omitting the factor A from the resulting equation,
2 dM
M? dt A/ + A ' T - A ' ~ K
, dA ., _ , dA
dt A ~ K ~dt ;
or since
jÿj- = 1 — AA' — fifj! — vv ,
substituting and dividing by A', we obtain
0 (\ r d^ 1 /d/A / diA , , dA dA ,
2 Y di +li Tt +v dt) =KA dt~di A '
or finally,
, dA , dp , dv
2 ( v Tt + ^ Tt + is ) = - ,v - fo ') (• 7Z + j % + * is
d£ ,y d£ di
dt dt.
(* d£ 1 J dt 1 ,v dt,
■ - (*v +>' + foo f'5+js +i â)-f'î + iî + *is) < tV +>'+*»').
_ (* is U is+ k it) + a ' +>' + fo '>
which is obviously true.
C.
52