444
ON THE ATTRACTION OF AN ELLIPSOID.
[75
Also from the equation
+ 18 — IX) (co 2 + m8 — mX) (co 2 + n8 — nX)
differentiating with respect to X, and writing X = P,
(eo 2 + 18 — IP) (w 2 + m8 — mP) (co 2 + n8 — nP)
or, as this may be written,
PQP
k(P — Q)(P — R)
Pa 2
; +
rrPb 2
+
?rC J
k ((&) 2 +18 — IP) 2 (<ö 2 + m8 — mPy (co 2 + n8 — nP) 2 j ’
(CO 2 +18-IP) <y + m8 -mP)(co 2 + n8-nP) \ 2 ;p . 2 + —— PV| + 7 a ^ DV
v /v '((y+ZS-ZP) 2 (ft) 2 +mS-mP) 2 (o) 2 +nS-nP) :
and from the values first written down, for B, G, F, we obtain (B — mP) (G — nP) — F 2
= (co 2 +m8)(co 2 +n8)—m 2 b 2 (co 2 +n8)—n 2 c 2 (co 2 +m8) — mP(co 2 + n8—n 2 c 2 ) — nP(co 2 +m8—m 2 b 2 ) + mnP 2
=(co 2 + m8 — mP) (co 2 + n8 — nP) — m 2 b 2 (co 2 + n8 — nP) — n 2 c 2 (co 2 + m8 — mP)
l 2 a 2 (co 2 + m8 — mP) (co 2 + n8 — nP) ^ , A .
= 5 a>*+ 18 —IP >the last reduction being effected by means of the equation
1 Pa 2 m 2 b 2 n 2 c 2
co 2 +18 — IP co 2 + m8 — mP co 2 + n8 — nP
Hence
PQR {(B - mP) (C - nP) - F 2 Y
K (P-Q)(P-R)
la
(co 2 +l8—lP)^(co 2 +m8 —mPy(co 2 +n8—nP) 2
l 3 a 2
+
rrPb 2
+-
n A c 2
(co 2 +l8—IP) 2 (a> 2 +m8 — mP) 2 (co 2 +n8—nP)
4
Substituting this value, and multiplying out the fractions in the denominator,
V = 47via x
f (w 2 (or + 18 — IPy (co 2 + m8 — mP)~ (co 2 + n8 — wP)" dco
J Pa 2 (co 2 +m8—mP) 2 (co 2 +n8—nP) 2 +m 3 b 2 (co 2 +n8—nP) 2 (co 2 +l8—IP) 2 +rPc 2 (co 2 +l8—IP) 2 (co 2 +m8—mP) 2 ’
the reduction of which integral has been already treated of in the former part of
this present memoir.