Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 1)

84] TWO SURFACES OF THE SECOND ORDER. 493 
and these values give (with the same signification as before of f g, h, l, m, n) 
2 (AC — B 2 ) = Aa 2 +Bb 2 + Cc 2 + 2Fbc +2Gca +2Hab +2Lad +2Mbd +2Ned +Dd\ 
2 (BD - C 2 ) = A a! 2 + Bb' 2 + Gc' 2 A 2Fb'c' + 2Gc'a' + 2Ha'V A 2La'd' A 2Mb‘d! + 2Nc'd’ A Dd' 2 , 
AD - BC = Aaa' + Bbb' A Ccc' + F(bc’ a b'c) + G (ca' A da) + H (ab' + a'b) 
+ L (ad' + a'd) + M (bd' + b'd) -f N (cd' + c'd) + Ddd', 
where A = n 2 y 4 + mV 4 + f 2 w 4 + 2fmz 2 w 2 — 2fny 2 w 2 A 2nmy 2 z 2 , 
B = l 2 z i + n 2 od + g 2 w 4 + 2gnx 2 w 2 — 2glz 2 w 2 + 2 In z 2 x 2 , 
C = m 2 x 4 -f l 2 y 4 + h 2 w 4 + 2hly 2 w 2 — 2hmx 2 w 2 + 2mlx 2 y 2 , 
D = f 2 x* + g 2 y 4 + JPz 4 — 2ghy 2 z 2 — 2hfz 2 x 2 — 2fg y 2 z 2 , 
F = l 2 y 2 z 2 , 
G = m 2 z 2 x 2 , 
H = n 2 x 2 y 2 , 
L = f 2 x 2 w 2 , 
M = g 2 y 2 w 2 , 
N = h 2 z 2 w 2 ; 
and then 4 (AC - B 3 ) (BD - C 2 ) - (AD - BC) 2 - 
(BC - F 2 ) f 2 + (CA - G 2 ) g 2 + (AB - H 2 ) h 2 +(AD- L 2 ) l 2 + (BD - M 2 ) m 2 4- (CD - N 2 ) n? 
+ 2 (GH-AF)gh +2 (HF-BG)lif f2 (FG-CH)fg 
- 2 (MN - DF) mn -2 (NL - DG ) nl - 2 (LM - DH) Im 
+ 2 (AM - LH) Ih +2 (BN — NF ) mf + 2 (CL - NG) ng 
- 2 (AN - LG ) Ig - 2 (BL - MH) mh-2 (CM - NF) nf 
+ 2 (NH - MG) If A 2 (LF - NH )mg + 2 (MG - LF ) nh, 
Substituting the values of A, B, &c., in this expression, the result after all reductions is 
f 2 m 2 n 2 x & -f- g 2 n 2 l 2 y s + li 2 l 2 m 2 z* -f f 2 g 2 h 2 w s 
-t 2gl 2 n (mg — nh) y e z 2 +2hm 2 l(nh — lf)z 6 x 2 + 2fn 2 m (If — mg) x 6 y 2 
— 2 hPm (mg — nh) y 2 z? — 2fm 2 n (nh — If) z 2 oA — 2gn 2 l (If — mg) x 2 y 6 
+ 2f 2 mn (mg — nh) xhif + 2 g 2 nl (nh — If) y 6 w 2 + 2 h 2 lm (If — mg) Aw 2 
— 2f 2 gh (mg - nh) xhif — 2fg 2 h (nh — If) y 2 w 6 — 2fgh 2 (If — mg) z 2 w 6 
+ /' (Pf* ~ Qghmn) mjV + g 2 (m 2 g 2 — Ghfnl) w 4 f + h 2 (n 2 h 2 — Glmfg) w*z 4 
+ P (Pf 2 — 6ghmn) ifz 4 + m 2 (m 2 g 2 — 6hfnl) z 4 F + n 2 (n 2 h 2 — Qlmfg) cAy 4 
+ 2gh (ghmn — 3f 2 P) vf y 2 z 2 + 2lif(hfnl — 3g 2 m 2 ) vAz 2 x 2 +2fg (fglm — 3h 2 n 2 ) w*x 2 y 2 
A 2hm (ghmn — 3f 2 P) z 4 x 2 w 2 A 2fn (Ifni — Sg 2 m 2 ) oAy 2 w 2 + 2gl (fglm — 3lPn 2 ) y 4 z 2 w 2 
— 2gn (ghmn — 3f 2 l 2 ) y 4 x 2 w 2 — 2hi (hfnl — 3g 2 m 2 ) z i y 2 w 2 — 2fm (fglm — 3h 2 iP) oAz 2 w 2 
— 2nm (ghmn — 3f 2 P) oAy 2 z 2 — 2nl (hfnl — 3g 2 m 2 ) y 4 z 2 x 2 — 2 Im (fglm — 3h 2 ri 2 ) z 4 x 2 y' 1 
— 2 (mg — nh) (nh — If ) (If — mg) x 2 y 2 z 2 w 2 = 0,
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.