Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 1)

see Mécanique Analytique, Avertissement, t. I. p. Y. [Ed. 3, p. vil] : only in this latter 
case V stands for the disturbing function, the principal forces vanishing. 
> = Ap & + Bq $ + Or £, Aup-rBq + jM-); 
dp dq dr d/c 
if Tf df 
{Ap ' ~ pBq ' + ^ ~ l Bqv ' + 1 CrtL ' ~ % (Ap * vBq+ ' xCr) - 
Also d I= Ap t +Bqd I +Cr ^ 
. . (d dT dT\ 
and hence 
= i {Ap'-vBq’ + yGr') - - Bqv' + - Cry! + -(.4jj= + Bq'- + Ch*) - *, (A p - vBq + yCr). 
K, K/ K> K> ^ 
Substituting for A', y, v, k , after all reductions, 
i^ t ~-^) = lUAp' + (C-B) q r}-v{Bq' + (A-C)rp}+yiCr + (B-A)p q }]-, 
and, forming the analogous quantities in y, v, and substituting in the equations of 
motion, these become 
dV 
{Ap + (G-B) qr) - v [Bq' f (A - C) rp) + y {Gr' + (B — A) pq] = \k , 
dV 
v [Ap' + (C — B) qr] + {Bq + (A — G) rp) - A {Gr f + (B - A)pq) = \k, 
dV 
y {Ap +(C — B) qr) + A {Bq + (A - G) rp) + {Gr + (B - A) pq) = £/c ; 
or eliminating, and replacing p, q, r, by ^^^, we obtain 
A% + (C - B )qr = \{(\+K)^ + (\y + v )d ^+{vX-y/-^), 
B^-KA-C)rp = i\(\y-v)^+(l+y^ + (yv + \)^), 
G % + (B ~ A)pq= * { ( " x+/l) s; + ^ ~ x) % + (1 + " !) aï} ;
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.