Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 1)

99] NOTE SUE QUELQUES FOEMULES QUI SE EAPPOETENT &C. 
569 
Cela donne 
{— IX — 2fl + (l — 2) 2 } -1^,2 + -Ri, 2; 1 
+ l (A — 21 + 6) (À, — 2/ + 5) |Qi—1,2 + -Ri—1,2; 
+ 2 (/a + — 2) (/a 4- 2Z — 3) |(3i,i + -Ri,i ; i 
A/a 
+ Rl, 2; 2 
A 2 /a 2 ) 
A 4~ /a 
(A + /a) 2 ] 
A/a 
+ -Ri—1,2; 
1 
A 2 /a 2 | 
A 4- /a 
A/a ' 
A 4- /a 
“ (A 4- /a) 2 ] 
A/a j 
A 4“ /a J 
j- = 0, 
ce qui se réduit à 
{- IX — 2/A + (l — 2) 2 } Ql y2 — (l — 2) (A, — l + 2) |-Ri,2; 1^ + ^ + -Ri,2; 2^ 
— 2A/A.R/, 2 . 1 — 2A 2 /aP/, 2 . 2 + 2\ 2 Rl 2 . 
+ £ (A. — 2£ 4- 6) (A. — 2i + 5) -j Qi_ 1,2 + -Ri—1,2;i ~R^ —1 1 2 ; 2 ^ + /¿J 
A/a 
(X + /a) 
+ 2 (/a 2^ — 2) (/a -4* 2Z — 3) Qi t i 4- 2 (/a — A. 4- 4*1 — 5) XfxRii. x 
4- 2 (X — 21 + 2) (X — 21 + 3) Ri tl . i 
A/a 
(A + /a) 
- 32J {A/a - 21 (A + /a)} Qi_i,i - 32ZA/a (A - 21) R^. 1 + S2lX 2 R l _ 1>1 . x = 0. 
A + /A 
En ne faisant attention d’abord qu’aux termes qui contiennent des puissances néga 
tives de A + /a, nous obtenons 
(1-2) (A —Z + 2)i^ >2;2 + Z(A —2£ + 6)(A —2£+5) j R z _i, 2; 2 = 0 
et 
— (/ — 2) (A — l -\-2) Ri 2 -1 + l (A — 21 + 6) (A — 21 + 5) Ri—1 >2; i 
4-2 (A — 2Æ 4- 2) (A — 2^+3).Ri,i.i -f-32ZA 2 Ei_i, i. i 4- 2X~Ri 2 . 2 = 0. 
La première équation, en calculant la constante arbitraire au moyen de i^ 2 , 2 2 = 200, donne 
_Ri,2 ; 2 = 100 Z (7 — 1) A [A — l + l]*- 3 ; 
l’expression de _R 2 2>2 = 200 se trouve par celle de P 2 2 qui peut être écrite sous la forme 
P2 2 = A (A - 3) /A (/A - 3) + 152A/A 4- 336 - 40A> 4- (40A 2 - 1156) ^ . 
A 4- /a (A4 - /a) 2 
En substituant la valeur de i^, 2; 2 et celles de 
R t l . l = - IQIX [A - l] l ~ 2 , Ri_i,i ; i = - 10 (l - 1) A [A - l 4- l] z ~ 3 
C. 
72
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.