Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 1)

44 
DEMONSTRATION OF PASCALS THEOREM. 
[9 
This is an immediate consequence of the equations 
. . x 3) X i} X 5 , Xg 
= 
. . X 3 , X iy Xg, Xg 
2/s, 2/4, 2/s, 2/s 
2/s, 2/4, 2/s, 2/6 
Z 3 , Z iy Zg , Zg 
rp rp rp rp rp rp 
> *A / 2> '"3) *^4) ^5? 
X\t X 3 , 
2/i, 2/2, 2/s, 2/4, 2/s, 2/e 
2/i, 2/2, • • 
Z l> , ^4, Z 5) Z 6 
¿1, ¿2, • • 
Consider now the points 1, 2, 3, 4, 5, 6, the coordinates of these being respectively 
x lf y 1} z x x 6 , y 6 , z 6 . I represent, for shortness, the equation to the plane passing 
through the origin and the points 1, 2, which may be called the plane 12, in 
the form 
12 x + y 12 y + z 12, = 0 ; 
consequently the symbols 12*, 12 y , 12 z denote respectively y x z 3 — y 2 z x , z x x. 2 — z 2 x u x x y 2 — x. 2 y x , 
and similarly for the planes 13, &c. If now the intersections of 12 and 45, 23 and 56, 
34 and 61 lie in the same plane, we must have, by Lemma (1), the equation 
12*, 
45*, 
23*, 
56*, 
12„ 
45j/, 
23^, 
56y, 
12,, 
45 z , 
23 z , 
56,, 
23*, 
56*, 
34*, 
61 
23„ 
56^, 
34j„ 
61, 
23„ 
56„ 
34 z , 
61 
Multiplying the two sides of this equation 
by the two sides respectively of the equation 
x 6 , x u 
2/e, yi, 
z ii 
x 3 , . . . = 612.345, 
2/2, • • • J 
¿2 , 
x 3 , 
x iy 
^5 
2/3, 
2/4, 
2/5 ! 
^3 , 
¿4, 
Zg 
and observing the equations 
x s 12* + y 6 12 y + z 6 12 z = 612, 
112 = 0, &c.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.