Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 2)

312 
A THIRD MEMOIR UPON QUANTICS. 
[144 
No. 28. 
N. 
M. 
L. 
L\ 
P. 
P'. 
M'. 
N\ 
a?df + 3 
a 2 ef + 1 
a 2 / 2 + 1 
a 2 / 2 + 3 
a 2 / 2 ... 
a 2 / 2 - 1 
abf 2 + 1 
acf 2 + 3 
a 2 « 2 - 2 
abdf+ 2 
abef — 34 
abef — 22 
abef + 1 
abef + 9 
acef + 2 
adef— 9 
abcf — 9 
a6e 2 — 9 
aedf + 76 
aedf— 12 
aedf — 3 
aedf— 1 
ad 2 f— 9 
ad + 6 
abde + 1 
cic 2 f — 9 
ace 2 — 32 
ace 2 + 64 
ace 2 + 2 
ace 2 — 18 
ade 2 + 6 
b 2 f 2 - 2 
ac 2 e + 18 
ac<ie + 32 
ad 2 e — 12 
ad 2 e — 36 
ad 2 e 
acPe + 12 
b 2 ef - 9 
beef + 1 
acd 2 — 12 
ad? — 18 
b 2 df- 32 
b 2 df+ 64 
b 2 df + 2 
b 2 df- 18 
bedf + 32 
bd 2 f+ 18 
b 3 f + 6 
b 2 cf + 6 
b 2 e 2 + 225 
b 2 e 2 - 45 
6 2 e 2 — 9 
b 2 e 2 
bee 2 
bde 2 - 15 
b 2 ce — 15 
b 2 de ... 
bc 2 f- 12 
bc 2 f - 36 
bc 2 f ... 
bc 2 f + 12 
bd 2 e — 15 
c 2 df — 12 
b 2 d 2 + 10 
bc 2 e - 15 
bede— 820 
bede + 20 
bede + 31 
bede +45 
<?f - 18 
c 2 e 2 + 10 
bchl ... 
bed 2 +10 
bd 3 + 480 
bd 3 
bd 3 - 18 
bd 3 - 30 
c 2 de + 10 
cd 2 e 
c 4 
c 3 d 
c 3 e + 480 
c 3 e 
c 3 e - 18 
<?e — 30 
cd 3 
d 4 
c 2 d 2 - 320 
c 2 d 2 
c 2 d 2 + 12 
c 2 d 2 + 20 
If the coefficients of the table 14 are represented by \A, B, \G, viz. writing 
A = 2 (ae — 4bd + 3c 2 ), 
B = of— 3 be + 2 cd, 
G = 2 (bf- 4ce + 3d 2 ), 
then we have the following relations between 1234, &c. and A, B, G, viz. 
C x 
+ B x 
+ Â X 
1234 = 
+ 6 a 2 
— 12 ab 
+ 16 ac — 10 b 2 
1235 = 
+ 6 ab 
- 2 ac -10 b 2 
+ 6 ad 
1236 = 
— 2 ac + 8 b 2 
+ 6 ad — 18 be 
- 2 df + 8 e 2 
1245 = 
+ 18 ac 
— 6 ad — 30 be 
+ 8 ae + 10 bd 
1246 = 
+ 12 be 
+ 4 ae — 4 bd — 24 c 2 
+ 4 be + 8 cd 
1345 = 
+ 24: etch 
— 8 ae — 40 bd 
+ 4 af + 20 be 
1256 = 
— 1 ae + 4 bd + 3 c 2 
+ 1 af + 5 be — 18 cd 
- 1 bf + 4 ce + 3d 2 
2345 = 
+ 20 ae + 40 bd — 30 c 2 
— 80 be + 20 cd 
+ 20 bf + 40 ce - 30 d 2 
1346 = 
+ 4 ae + 8 bd + 6 c 2 
— 36 cd 
+ 4 bf + 8 ce + Od 2 
2346 = 
+ 4 af + 20 be 
— 8 bf — 4 ce 
+ 24 cf 
1356 = 
+ 4 be + 8 cd 
+ 'l bf — 4 ce — 24 d 2 
+ 12 de 
2356 = 
+ 8 bf + 10 ce 
— 6 cf — 30 de 
+ 18 df 
1456 = 
+ 6 ce 
+ 6 cf — 18 de 
- 2 df + 8 e 2 
2456 = 
+ 6 cf 
- 2 df - 10 e 2 
+ 6 ef 
3456 = 
+ 16 df - 10 e 2 
-12 ef 
+ 6/ 2 
and the following relations between L, L', &c. and A, B, G, viz. 
Gx 
+ B x 
+ A x 
N = 
— 3 ac + 3 b 2 
+ 3 ad — 3 be 
— 1 ae + 1 bd 
M = 
— 3 ad + 3 be 
+ 3 ae — 3 c 2 
— 1 af + 1 cd 
L = 
+ 11 ae + 28 bd — 39 c 2 
+ 1 af - 75 be + 74 cd 
+ 11 bf + 28 ce - 39 d 2 
IJ = 
— 7 ae + 4: bd + 3 c 2 
+ 3 a/+ 15 be- 18 cd 
- 7 6/+ 4 ce + 3d 2 
2 P = 
— 1 ae — 2 èc? + 3 c 2 
+ 3 be — 3 cd 
+ 1 bf + 2 ce — 3d 2 
F = 
+ 3 ae — 6 bd + 3 c 2 
— 1 af + 1 cd 
+ 3 bf — 6ce+ 3d 2 
M'= 
— 1 af + 1 cd 
+ 3 bf - 3d 2 
- 3 cf + 3 de 
N' = 
— 1 bf + 1 ce 
+ 3 cf — 3 de 
- 3 df+ 3 e 2
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.