Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 2)

1 45] A MEMOIR UPON CAUSTICS, 
379 
and the values of the coefficients are 
4 = 1, 
B = 0, 
C = 4/t 2 ir, 
D = 4/a 2 ?/, 
E = — 2/a 2 (it 2 + y 2 ) — 2/a 2 + 1. 
Substituting these values in the equation 
{12 (A 2 + B 2 ) - 3 (<7 2 + D 2 ) + 4£ 2 j 3 
- {274 (C 2 - D 2 ) + 54>BCD - (72 (4 2 + £ 2 ) + 9 (C 2 + D 2 )) E + 8# 3 } 2 = 0, 
the equation of the envelope is found to be 
16 {(1 — /a 2 + /a 4 ) — (/a 2 + /a 4 ) (it 2 + y 2 ) + /a 4 (it 2 + z/ 2 ) 2 } 3 
4 — 6/a 2 — 6/a 4 + 4/a 6 j 2 
— (6/A 2 + 3/A 4 + 6/A 6 ) (it 2 + Z/ 2 ) — 27/A 4 (it' 2 — Z/ 2 ) J 
- - [ *= o, 
— (6/A 4 + 6/A 6 ) (it 2 + y 2 ) 2 
+ 4/a 6 (it 2 + z/ 2 ) 3 
which is readily seen to be only of the 8th order. But to simplify the result, write 
first (x 2 + y 2 —1) +1, and 2if 2 — 1 — (a? Ay 2 — 1) in the place of x 2 + y 2 and x 2 — y 2 respec 
tively, the equation becomes 
4{(1 - /A 2 ) 2 - /A 2 (1 - /A 2 ) (if 2 + y 2 - 1) + /A 4 (if 2 + y 2 ~ l) 2 } 3 
' 2 (1 - /A 2 ) 3 ) 2 
- 3/A 2 (1 - /A 2 ) 2 (x 2 A y 2 - 1) - 27/aV 
—< y — 0. 
- 3/a 4 (1 -/A 2 )(if 2 + z/ 2 ~l) 2 
+ 2/a 6 (if 2 Ay 2 - l) 3 
Write for a moment l—/j? = q, y?(x 2 Ay 2 — 1) = p, the equation becomes 
4 (q 2 — qp A p 2 ) 3 — (2q 3 — Sq 2 p — Sp 2 + 2p 3 — 27/A 4 if 2 ) 2 = 0 ; 
or developing, 
4 (</ 2 — gp + p 2 ) 3 — (2q 3 — 3q 2 p — 3qp 2 + 2p 3 ) 2 
+ 54 (2^ 3 — 3q 2 p — 3qp 2 4- 2p 3 ) p}x 2 — 729/6^ = 0, 
and reducing and dividing out by 27, this gives 
q 2 p 2 (p — </) 2 + 2 (p + <?) (2p — q){p — 2q) y*x 2 — 27/A 8 it 4 = 0, 
48—2
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.