1 45] A MEMOIR UPON CAUSTICS,
379
and the values of the coefficients are
4 = 1,
B = 0,
C = 4/t 2 ir,
D = 4/a 2 ?/,
E = — 2/a 2 (it 2 + y 2 ) — 2/a 2 + 1.
Substituting these values in the equation
{12 (A 2 + B 2 ) - 3 (<7 2 + D 2 ) + 4£ 2 j 3
- {274 (C 2 - D 2 ) + 54>BCD - (72 (4 2 + £ 2 ) + 9 (C 2 + D 2 )) E + 8# 3 } 2 = 0,
the equation of the envelope is found to be
16 {(1 — /a 2 + /a 4 ) — (/a 2 + /a 4 ) (it 2 + y 2 ) + /a 4 (it 2 + z/ 2 ) 2 } 3
4 — 6/a 2 — 6/a 4 + 4/a 6 j 2
— (6/A 2 + 3/A 4 + 6/A 6 ) (it 2 + Z/ 2 ) — 27/A 4 (it' 2 — Z/ 2 ) J
- - [ *= o,
— (6/A 4 + 6/A 6 ) (it 2 + y 2 ) 2
+ 4/a 6 (it 2 + z/ 2 ) 3
which is readily seen to be only of the 8th order. But to simplify the result, write
first (x 2 + y 2 —1) +1, and 2if 2 — 1 — (a? Ay 2 — 1) in the place of x 2 + y 2 and x 2 — y 2 respec
tively, the equation becomes
4{(1 - /A 2 ) 2 - /A 2 (1 - /A 2 ) (if 2 + y 2 - 1) + /A 4 (if 2 + y 2 ~ l) 2 } 3
' 2 (1 - /A 2 ) 3 ) 2
- 3/A 2 (1 - /A 2 ) 2 (x 2 A y 2 - 1) - 27/aV
—< y — 0.
- 3/a 4 (1 -/A 2 )(if 2 + z/ 2 ~l) 2
+ 2/a 6 (if 2 Ay 2 - l) 3
Write for a moment l—/j? = q, y?(x 2 Ay 2 — 1) = p, the equation becomes
4 (q 2 — qp A p 2 ) 3 — (2q 3 — Sq 2 p — Sp 2 + 2p 3 — 27/A 4 if 2 ) 2 = 0 ;
or developing,
4 (</ 2 — gp + p 2 ) 3 — (2q 3 — 3q 2 p — 3qp 2 + 2p 3 ) 2
+ 54 (2^ 3 — 3q 2 p — 3qp 2 4- 2p 3 ) p}x 2 — 729/6^ = 0,
and reducing and dividing out by 27, this gives
q 2 p 2 (p — </) 2 + 2 (p + <?) (2p — q){p — 2q) y*x 2 — 27/A 8 it 4 = 0,
48—2