Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 2)

402 
A MEMOIR ON CURVES OF THE THIRD ORDER. 
[146 
then we have 
a' (be — f) + P (ca — g 2 ) + c' (ab — h 2 ) + 2f (gh — af) + 2g' (hf— bg) + 2h! (fg — ch) 
(l' 2 + 2 lf(^ + v 3 + ^) 2 
+ (2V + 41- 32W + 8Z 4 ) (f + ?? 3 + 0 
+ (24ZZ' 2 + 48Z 4 Z' 2 - 72Z 2 Z' + 24Z 3 + 3) |V£ 2 , 
which may be verified by writing V = Z, in which case the right-hand side becomes as 
1 _|_ 2l 3 
it should do, 3 (P/7) 2 . If l' — , that is, if the syzygetic cubic be the Hessian, 
then the formula becomes 
, n ~ ? 1 f (l + 4Z 3 + 76Z«)(f + f + Ç 3 ) 2 ) 
a (be - f 2 ) + &c. = I 
1 + 12Z 2 (-1 + 26Z 3 + 56Z 6 )(f 3 + T? 3 +> 
which is equal to 
[+121 (2 + 57Z 3 + 168Z« + 16Z 10 ) fV£ 2 
1 
36Z 4 
r 4 QP -24S.PP . 
26. The equation 
(6c' + Pc - 2ff, ... gh! + g'h - af - a/, .. 77, £) 2 = 0 
is the equation in line coordinates of a conic, the envelope of the line which cuts 
harmonically the conics 
(a, b, c, f g, h ~$x, y, z) 2 = 0, 
(a', P, c', f, g', h'\x, y, zf = 0 ; 
and if a, b, &c., a', &c. have the values before given to them, then the coefficients 
of the equation are 
be' + b'c -2ff «£{-£» + 4«' <4 + Z') ( v 3 + £ 3 ) + (16«' - 2Z 2 - 21' 2 ) Ç V Ç, 
ca' + c'a -2gg' =v{~ V 3 + 4IV (Z + V) (£ 3 + f ) + (16ZZ' - 21 2 - 21' 2 ) ij n Ç, 
ab' + a'b - 2 hh' =£{-?+ 4,11' (l + V) (f 3 + f) + (1611' - 2l 2 - 21' 2 ) Ç V Ç, 
gh' + g'h — af - af= f {(Z 2 + l' 2 ) (f + f + £ 3 ) + (21 + 21' + 8№) Ç V Ç] + (1 + 4ZZ' (l +l')) 
hf + hf- bg' -b'g=y {(l 2 +1' 2 ) (£» + v * + £ 3 ) + (21 + 21' + 81H' 2 ) &Ç} + (1 + 411' (l +1')) Ç 2 ?, 
ff +f9 ~ ch' -c'h = Ç {(l 2 + l' 2 ) (f 3 + f + £ 3 ) + (21 + 21' + 81H' 2 )+ (1 + 4ZZ' (l +1')) £y ; 
and we thence obtain 
(be' + Pc - 2ff,.., gh' + g'h - af - a'f .. ££ v , Ç) 2 = 
~(£ 3 + 7? 3 +£ 3 ) 2 
+ ( Z 2 + Z' 2 + 16ZZ') (£ 3 + 7? 3 + £ 3 ) ÇgÇ 
+ (6Z + 6Z' + 24Z 2 Z' 2 ) ^fÇ 2 
+ (4 +16(Z 2 Z , + ZZ ,2 ))(t 7 3 ^+^ 3 + |Y), =0
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.