406
A MEMOIR ON CURVES OF THE THIRD ORDER.
[146
The equation of the three tangents is
II = [(a?! 2 + 2ly x z^) x + (i/* 2 + 2IzjOBj) y + (z 3 2 + 2Ix^) z] j = 0,
x [(x? + 2ly. 2 z 2 ) X + (yi + 2lz& a ) y + Oa 2 + 2lx 2 y 2 ) z]
x [(x 3 2 + 2ly 3 z 3 ) X + (y./ + 2lz 3 x 3 ) y + (z 2 + 2lx 3 y 3 ) z] j
and if we put
F= (P + V 3 + P) 2 - 24Z 2 (p + y 3 + p) £??£+(- 24£ - 48£ 4 ) p^p + (- 4 + 32£ 3 ) (y 3 £ 3 + pp + p»f),
(F 7 is the reciprocant .FZ7 of my Third Memoir), then we have identically
F . U — II = (%x + yy + p) 2 (g'x + yy + gz),
and the equation of the satellite line is %x + y'y + %z — 0. In fact the geometrical
theory shows that we must have
F. U — iVTI = (pc + yy + p) 2 (J;'x + yy + £'z),
and it is then clear that JST is a mere number. To determine its value in the most
simple manner, write 1 = 0, y = 0, x = f, z = — we have then F. U—N 11 = 0, where
F = p + rf + p - 2?fp - 2pp - 2% 3 y 3 , H = p - p.
The value of II is U = F. U, and we thus obtain IV= 1. For, substituting the above
values,
II = (xtt-ztf) (xtt-z 2 £) (xtf- ztf)
— f*3/y» 2/yi 2/v) 2
L, tAsi 1^2 O/g
— p£ (oc 2 x 2 x 3 + &c.)
+ £P («AV + &C.)
— % 3 Zl% 2 Z 3 2 ,
and we have
XyXcJK 3 = y s P,
x x x& 3 + &c. = 3pp
x x z 2 z 3 + &c. = - 3£p,
■W 3 = I 3 - y 3 ,
and thence
xfxizi + &c. = 9pp + 6p 2 (y 3 - p) = 3pp + 6£pTf,
x 2 zfz 3 2 + &c. = 9pp - 6pf(f - y 3 ) = 3pp 4- 6pp7 3 ,
and consequently
n = p (v 3 - P) 2
-?£.S&(? + y s )
+ SF.3p£(P+^)
- P(P-«?*)*
= (P - P) (P + ?? 6 + P ~ 2p77 3 - 2p| 3 - 2% 3 y 3 ).