Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 2)

406 
A MEMOIR ON CURVES OF THE THIRD ORDER. 
[146 
The equation of the three tangents is 
II = [(a?! 2 + 2ly x z^) x + (i/* 2 + 2IzjOBj) y + (z 3 2 + 2Ix^) z] j = 0, 
x [(x? + 2ly. 2 z 2 ) X + (yi + 2lz& a ) y + Oa 2 + 2lx 2 y 2 ) z] 
x [(x 3 2 + 2ly 3 z 3 ) X + (y./ + 2lz 3 x 3 ) y + (z 2 + 2lx 3 y 3 ) z] j 
and if we put 
F= (P + V 3 + P) 2 - 24Z 2 (p + y 3 + p) £??£+(- 24£ - 48£ 4 ) p^p + (- 4 + 32£ 3 ) (y 3 £ 3 + pp + p»f), 
(F 7 is the reciprocant .FZ7 of my Third Memoir), then we have identically 
F . U — II = (%x + yy + p) 2 (g'x + yy + gz), 
and the equation of the satellite line is %x + y'y + %z — 0. In fact the geometrical 
theory shows that we must have 
F. U — iVTI = (pc + yy + p) 2 (J;'x + yy + £'z), 
and it is then clear that JST is a mere number. To determine its value in the most 
simple manner, write 1 = 0, y = 0, x = f, z = — we have then F. U—N 11 = 0, where 
F = p + rf + p - 2?fp - 2pp - 2% 3 y 3 , H = p - p. 
The value of II is U = F. U, and we thus obtain IV= 1. For, substituting the above 
values, 
II = (xtt-ztf) (xtt-z 2 £) (xtf- ztf) 
— f*3/y» 2/yi 2/v) 2 
L, tAsi 1^2 O/g 
— p£ (oc 2 x 2 x 3 + &c.) 
+ £P («AV + &C.) 
— % 3 Zl% 2 Z 3 2 , 
and we have 
XyXcJK 3 = y s P, 
x x x& 3 + &c. = 3pp 
x x z 2 z 3 + &c. = - 3£p, 
■W 3 = I 3 - y 3 , 
and thence 
xfxizi + &c. = 9pp + 6p 2 (y 3 - p) = 3pp + 6£pTf, 
x 2 zfz 3 2 + &c. = 9pp - 6pf(f - y 3 ) = 3pp 4- 6pp7 3 , 
and consequently 
n = p (v 3 - P) 2 
-?£.S&(? + y s ) 
+ SF.3p£(P+^) 
- P(P-«?*)* 
= (P - P) (P + ?? 6 + P ~ 2p77 3 - 2p| 3 - 2% 3 y 3 ).
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.