146] A MEMOIR ON CURVES OF THE THIRD ORDER. 407
Now considering the equation
F . U - II = (£k + yy + (Ç'æ + y y + Ç'z),
in order to find f', y, £' it will be sufficient to find the coefficients of a?, y 3 , z 3 in
the function on the left-hand side of the equation. The coefficient of x 3 in II is
Oj 2 + 2 ly x z^) (¿r 2 2 + 2 Iz&t) (x 3 2 + 2 lx 3 y 3 )
—— /y> 2 /y» 2/y» 2
- u/j t^2 ^3
+ 2£ (xi l x?y 3 z 3 + &c.)
+ 4£ 2 {x?y 3 z 3 y 3 z 3 + &c.)
+ 8£ 3 2/iMsWs ;
and it is easy to see that representing the function
(1* 1> M$/3£-7?7, yf-a£
b y
(a, b, c, f, g, h, i, j, k, l$a, /3, 7) 3 ,
the symmetrical functions can be expressed in terms of the quantities a, b, &c., and
that the preceding value of the coefficient of oc 3 in II is
a 2
+ 21 (9hj — 6al)
+ 4Z 2 (6gk - 3fj - 3hi + 31 2 )
+ 81 3 be ;
and substituting for a, &c. their values, this becomes
+ 21 {-9(Çy* + 2ly?)(?Ç+2lÇy 3 )}
+ 4Z 2 {- 6 (№ + 2lÇrf) (p77 + 2IÇÇ 2 )
+ S(yp + 2l&y(& + 2lfr)
+ 3 (%rf + 2lyÇ 2 ) (rfÇ + 2ly!?)}
+ 81 3 (?-y 3 ) (?-?),
and reducing, we obtain for the coefficient of x 3 in II the following expression,
W- £ 3 ) 2
-18J frç 2 ^
- 2U 2 (Ç 3 + y 3 +Ç 3 )%yÇ
- 2U 3 {y 3 ? + + Ç 3 r)
+ 8 P(f-if) (£»-?).