mmmmam
[153
y, this
153] OF A BIPARTITE QUADRIC FUNCTION.
8. But in like manner the equation
(tr. il$E — x, H — y, Z - z) = — (tr. T][E, H, Z)
501
gives
and we then obtain
(tr. 0 + T£E, H, Z) = (tr. il][x, y, z),
or
(tr.il-T£E, H, Z) = (tr. iTftx,, y„ z,).
9. In fact these equations give
(tr. 2il#E, H, Z) = (tr. il][x + x /} y + y /} z + z),
2(E, H, Z) = (x + x / , y + y„ z + z)-,
and conversely, this equation, combined with either of the two equations, gives the other
of them. We have then
and thence
(x , y , z) = ((tr.il) Htr.il + TftE, H, Z),
(E, H, Z) = ((tr. O^T)" 1 tr. il$x„ y„ z),
(x, y, z) = ((tr. il)“ 1 (tr. il + T)(tr. il - T)-»tr. il$x /} y„ z 7 ).
10. Hence, recapitulating, we have the following theorem for the automorphic linear
transformation of the bipartite
(ii£®, y, y> z )>
viz. T being an arbitrary matrix, if
(®, V, z) = (n~'(Cl-T)(il + T)-^ilfe, y„ z),
then
(x, y, z) = ((tr. il)“ 1 (tr. il + T)(tr. il — T) -1 tr. il$ X/ , y„ z),
(il][a;, y, z#x, y, z) = (il$>„ y„ zftx,, y„ z),
which is the theorem in question.
11. I have thought it worth while to preserve the foregoing investigation, but
the most simple demonstration is the verification a 'posteriori by the actual substitution
of the transformed values of (x, y, z), (x, y, z). To effect this, recollecting that in general
tr. (A -1 ) = (tr. Z.) -1 and tr. ABGD = tr. D. tr. G. tr. B. tr.il, the transposed matrix of
substitution for the further variables is
iltil-rr^il + T) il- 1 ;
and compounding this with the matrix il of the bipartite, and the matrix
il" 1 (il - T)(il + T)" 1 il
"mi