OF A BIPARTITE QUADRIC FUNCTION.
505
153]
17. Hence, finally, we have the following Theorem for the automorphic linear
transformation of the bipartite quadric,
(G#®, y> y, z),
when the two transformations are identical, viz. if T / be a skew symmetrical matrix,
and if
T = - (i-in- 1 + tr. - tr. + T,;
then if
y, «) = (H-i(il-T)(0 + T)“*il$« /f y„ z),
(x, y, z) = (il -1 (il — T) (i2 + T) -1 il^ X/ , y /f Z/ );
we have
(&&> y> z ) = ( a fa,> Vn ^5 x /> y„ z,);
and in particular,
If O is a symmetrical matrix, then T is an arbitrary skew symmetrical matrix ;
If XI is a skew symmetrical matrix, then T is an arbitrary symmetrical matrix.
C. II.
64