132
[189
189.
NOTE ON A FORMULA IN FINITE DIFFERENCES.
[From the Quarterly Mathematical Journal, vol. n. (1858), pp. 198—201.]
In Jacobi’s Memoir “De usu legitimo formula} summatoria} Maclaurinianse,” Grelle,
t. xil. [1834], pp. 263—273 (1834), expressions are given for the sums of the odd
powers of the natural numbers 1, 2, 3...« in terms of the quantity.
viz. putting for shortness
u = x(x + 1),
Sx r = F + 2 r + ... + x r ,
the expressions in question are
Sx 3 = \u 2 ,
Sx 5 = £u 2 (u —
Sx 7 = ^u 2 (u 2 — fw + §),
Sx? = -feu 2 (u 3 — |u 2 + 3u — f),
Sx 11 = feu 2 (u* — 4 v? + fe-u 2 —10 u + 5),
Sx 13 = feu 2 {u 5 - 'feu 4 + ?fe-u 3 - fe&ii 2 + sfe-u - %%!-),
&c.,
which, especially as regards the lower powers, are more simple than the ordinary
expressions in terms of x.
The expressions are continued by means of a recurring formula, viz. if
1
Sx 2p ~
Sx 2 ?- 1 =
2p — 2
1
2V
\uP 1 — aiii p ~ 2 ...+ (—) p_1 a p - 3 u 2 },
{u p
- h,u p ~ 2 ...+ (~) p b p _ 3 u 2 },