Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 3)

[192 
192] 
GENERAL TBILINEAR EQUATION OF THE SECOND DEGREE. 
147 
19—2 
iO = o, 
Writing a, b, c (instead of l, m, n) for the sides of the fundamental triangle and 
A, B, G for the angles, the equation in question is 
r 2 = be cos A tj 2 + ca, cos B rf + ab cos C £ 2 . 
Now writing a, /3, 7 for the inclinations of the line r to the sides of the triangle, we 
have 
A = /3 - 7, 
B = 7 - a, 
G =7r + OL — /3. 
Moreover taking for a moment X, /a, v to denote the perpendiculars from the angles 
on the opposite sides, we have 
X = c sin B = b sin G, 
and 
n — a sin G = c sin A, 
v = b sin A = a sin B, 
f = 
r sm a 
r sin ¡3 
. _ r sm 7 
v 
the values of £' 3 , ?? 2 , £ 2 consequently are 
r 2 sin 2 a. r 2 sin 2 ¡3 r 2 sin 2 7 
be sin B sin G ’ ca sin G sin A ’ ab sin A sin B ' 
and the equation to be proved becomes 
_ cos A sin 2 a. cos B sin 2 /3 cos G sin 2 7 
sin B sin C sin G sin A sin A sin B ’ 
or, what is the same thing, 
sin A sin B sin G — sin A cos A sin 2 a + sin B cos B sin 2 ¡3 + sin G cos C sin 2 7, 
or again 
4 sin A sin BsinC = sin 2 A (1 — cos 2a) + sin 2 B (1 — cos 2/3) + sin 2 C (1 — cos 27), 
or putting for A, B, G their values in terms of a, ¡3, 7 this is 
gation 
— 4 sin (/3 — 7) sin (7 — a) sin (a — /3) = sin (2/3 — 27) (1 — cos 2a ) 
+ sin (27 - 2a ) (1 - cos 2/3) 
+ sin (2a — 2/3) (1 — cos 27),
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.