Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 3)

252 NOTE ON THE SUMMATION OF A CERTAIN FACTORIAL EXPRESSION. [205 
and hence multiplying by dx and integrating from x = 0, and again multiplying by 
dx and integrating from x = 0 to x = 1, we find 
1 1 de. e a - 3 (i - 0)—r+0+i -1 1 ¿0.0«-s (i - 0)-«-y-i + (/3 + 2) f 1 dd. 0“- 2 (i - 0)-«-v-i 
0 3 0 3 0 
if for shortness 
(/3 + 1) (/5 + 2) II (a — 1) II (— a — 7 — 1) 1 a 
H (— 7 — 1) 3 ’ 
a . /3 a. a+1. /3./3 — 1 
3.7"^ 3.4.7.7 — 1 
-f &c. 
Substituting for the definite integrals their values, 
n (a - 3) II (- a - 7 + ¡3 + 1) II (a - 3) II (- a - 7 - 1) II (a - 2) II (- a - 7 - 1) 
IT (— 7 + /3 — I) n (— 7 — 3) + ' n (— 7 — 2) 
whence 
(/3 + 1) (/3 + 2) II (a - 1) II (- a - 7 - 1) , 0 
11 ( — 7 — 1 ) 3 ’ 
i03 + l)(/3 + 2)S = 
II (a — 3) ri(-a-7 + /3 + l) n(- 7 -l) 
Il (a-1) II (— a — 7 — 1) U(-y + /3-l) 
n(a-3) II (— 7 — 1) ox n (a — 2) n(- 7 -l) 
TT (a - 1) n (- 7 - 3) + + ; II (a - I) * II (- 7 - 2)' 
The second and third terms are 
- (a _ i)^ _ 2) (7 + 1) (7 + 2) - (^ + 2) (7 + 1), 
which are 
(a— T) (a — 2) («£ + 2a “ + 7 - 2). 
For the reduction of the first term we have 
II(— et — 7 + /3+1) = [/3 + 1— a — 7]^ +2 II (— a — 7 — 1), 
H (/3-7-1) =[/3-7_rpn(—7 —1); 
and we thus find 
i (0 +1) (0 + 2) (a - 1) 0 - 2) 8 = - (7 + U («0 + 2« - 20 + 7 - 2), 
where, as before, 
a./3 , a.a + l./3./3 — 1
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.