276 A MEMOIR ON THE PROBLEM OF DISTURBED ELLIPTIC MOTION,
and attending to the equations cos 2 <£ sec' 2 y + sin 2 cf> cos 2 x — 1 we deduce at once
d na? V1 — e 2 =
1
[212
. dil 7 . . dCl j
cos © sec 2 y , a£ 4- sm © cos a? -y- at,
^ J dv dy
dcf)
na
2 Vl - e 2
— sin cf> cos 2 ¿c ^ di + cos </> cos x dt).
Now the position of the planet may be determined by the quantities r, z, 6, cf>, or
we may consider Cl as a function of the last-mentioned quantities. And if on the
right-hand side fl = d (r, v, y) as before, the formulae of transformation are
dCl 7 dCl 7 dCl 7 dCl-. dClj dCL 1Q dCl ,
-f- dr + - 7 - dv + — 7 — a?/ = —- dr+-r-dz+ dd + yy- a©
ar aw ay J dr dz dd dcp
where
and we have
dv — cos cf> sec 2 y dz — tan z cos 2 x sin cf> dcf> + dd,
dy — sin cf) cos x dz + tan 2 cos x cos cf> d<f>,
dCl
dCl
dr
~ dr ’
dCl
dCl
dd
~ dv ’
dCl
/
— sin (f) COS 2 X
dCl
+ cos </>
dCl\
dcf)
= tan z 1
dv
cos x 7 —
dy)
dCl
^ cos cf) sec 2 y
dCl
+ sin (f)
dCl\
dz
dv
COS X y—
dy)
where on the left-hand side il = if (r, z, 6, cf>); and these equations give
dCl ^ dQ. ,dCl
co t^ = co t^- c --c°s ec « 3?>
an equation which is satisfied by O = il (r, z, 0, cf>). We have thus
dr = 0,
dv = 0,
dy = 0,
7 nae sin f
d .... ./ =
V1 — e 2
d na 2 V1 — e 2 =
d<f> =
na‘
m
dr
<m
dr
cin
Vl - e 2 #
cot z
dt,
clt,
dt,