Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 3)

212] 
A MEMOIR ON THE PROBLEM OF DISTURBED ELLIPTIC MOTION. 
283 
D 
and 
dd = dd' + cos cf>' (tZ© — da) — cos cf)(dZ — da) + sinS sin cj> d<5>, 
dcf> = — cosec G sin cf,' (¿Z© — da) + cot G sin cf> (dZ — da) + cosec G sin S' cos <// cZ<E>, 
dcf) = — cot G sin cf>' (cZ© — da') 4- cosec G sin cf) (dZ — da) + cosec G sin S cos cf) (Zd?, 
and it is proper to remark, that in obtaining these equations no use has been made 
of the equations da = cos cf> dO, da' = cos cf)' dd'. 
The term in eZ® which contains da', &c. may be written 
(da' — cos 4>' dd') + cos <// dO' + cot d> sin S' dcf)' — cosec sin <£ cos S dO', 
which is equal to 
(da' — cos 0' dd') + cot <i> (sin S' dcf)' — cos S' sin <f>' dd') ; 
and the term in dZ which contains da, &c. may be written 
(da — cos cf> dd) + cos cf) dd — cot sin Sdcf> + cosec <f> sin </>' dd, 
which is equal to 
(da — cos cf) dd) — cot (sin S dcf) — cos S sin cf> dd); 
reductions which depend on 
cos cf>' — cosec <£> sin cf> cos S = — cot <3> sin cf)' cos S', 
cos cf) + cosec <i> sin cf>' cos S' = — cot sin cf> cos S, 
or, what is the same thing, 
cos cf>' sin <f> — sin cf)' cos <i> cos S' = sin cf) cos S, 
cos (f) sin d> — sin (f) COS COS S = — sin c})' cos S', 
which are relations between the sides and angles of the spherical triangle. And we 
then have 
(Zd> = (cos Sdcf> + sin S sin cf) dd) — (cos S' dcf)' + sin S' sin cf>' dd'), 
d%=(da' — cos cf>'dd') — cosec d> (sin Sdcp — cos S sin cf> dd) + cot <3> (sin S' dcf>'— cos S' sin cf>' dd'), 
dZ =(da — cos cf) dd ) — cot (sin Sdcf>- cos S sin <6 dd) + cosec <f> (sin S' dcf)'— cos S' sin cf)' dd'), 
expressions which may be simplified by omitting the terms (da — cos cf>' dd') and 
(da — cos cf> dd). 
Next substituting for da, dcf>, dd, their values, we obtain, 
dr 
d}> 
1 nae sin f 
Vi ^ 
36—2
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.