212]
A MEMOIR ON THE PROBLEM OF DISTURBED ELLIPTIC MOTION.
283
D
and
dd = dd' + cos cf>' (tZ© — da) — cos cf)(dZ — da) + sinS sin cj> d<5>,
dcf> = — cosec G sin cf,' (¿Z© — da) + cot G sin cf> (dZ — da) + cosec G sin S' cos <// cZ<E>,
dcf) = — cot G sin cf>' (cZ© — da') 4- cosec G sin cf) (dZ — da) + cosec G sin S cos cf) (Zd?,
and it is proper to remark, that in obtaining these equations no use has been made
of the equations da = cos cf> dO, da' = cos cf)' dd'.
The term in eZ® which contains da', &c. may be written
(da' — cos 4>' dd') + cos <// dO' + cot d> sin S' dcf)' — cosec sin <£ cos S dO',
which is equal to
(da' — cos 0' dd') + cot <i> (sin S' dcf)' — cos S' sin <f>' dd') ;
and the term in dZ which contains da, &c. may be written
(da — cos cf> dd) + cos cf) dd — cot sin Sdcf> + cosec <f> sin </>' dd,
which is equal to
(da — cos cf) dd) — cot (sin S dcf) — cos S sin cf> dd);
reductions which depend on
cos cf>' — cosec <£> sin cf> cos S = — cot <3> sin cf)' cos S',
cos cf) + cosec <i> sin cf>' cos S' = — cot sin cf> cos S,
or, what is the same thing,
cos cf>' sin <f> — sin cf)' cos <i> cos S' = sin cf) cos S,
cos (f) sin d> — sin (f) COS COS S = — sin c})' cos S',
which are relations between the sides and angles of the spherical triangle. And we
then have
(Zd> = (cos Sdcf> + sin S sin cf) dd) — (cos S' dcf)' + sin S' sin cf>' dd'),
d%=(da' — cos cf>'dd') — cosec d> (sin Sdcp — cos S sin cf> dd) + cot <3> (sin S' dcf>'— cos S' sin cf>' dd'),
dZ =(da — cos cf) dd ) — cot (sin Sdcf>- cos S sin <6 dd) + cosec <f> (sin S' dcf)'— cos S' sin cf)' dd'),
expressions which may be simplified by omitting the terms (da — cos cf>' dd') and
(da — cos cf> dd).
Next substituting for da, dcf>, dd, their values, we obtain,
dr
d}>
1 nae sin f
Vi ^
36—2