Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 3)

i 
284 
A MEMOIR ON THE PROBLEM OF DISTURBED ELLIPTIC MOTION. 
[212 
d na? V1 — e 2 = dt, 
a\> 
dd> = t= (sin >8 ~rj — cos >8 (cot cf) ( 7 +coseccf) i Jn ) )dt— (sin S'd(f>'+sin S'sin cf)'dd'), 
no 2 V1 — e 2 \ # v do- ddjj 
dH = — C °( ^ (cos 4-sin $ ["cot </> ^-fcosec </> dt+cosec <i> (sin S'dcf>'—cos S'sin ft dd'), 
d© = 
na? V1 — e 2 
cosec d> 
— ^cos >8 ^ +sin $ ^cot <£ + cosec c ^ + cot^sinß'd^'—cos$'sin0 , d0 / ), 
m* Vl — e : 
where il = il (r, ]?, a, d, 0), as before. 
But il may be expressed in the form il = il (r, ]>, 2, 0, d>, a', 6', </>'), or dis 
regarding a', 6', (f)', in the form il = il (r, ]>, 2, ©, d>), and to effect the transformation 
of the differential coefficients we must write, 
dd> = cos S d<j) + sin S sin $ dd, 
d® = — cosec 4> (sin S d<f> — cos S sin <fi dd), 
d2 = (da — cos $ dd) — cot d> (sin Sdcf) — cos S sin (f> dd), 
or, what is the same thing, 
d(f> = cos S d(f) — sin S sin d? d®, 
dd = cosec (f) (sin S d<f> + cos S sin d> d®), 
da = d2 — cos d 5 d® + cot <£ (sin S dd> + cos S sin d> d®), 
and substituting in 
dfl 7 dil 7 dil 7 dil 7/ , dil 7 . 
dr + -dp d * + <& daJr Cie de+ cl4 d4, 
dr 
dil 
dr 
dil 7 dil 7l dil 7N , dil 7 ~ dil 7 * 
= ^ + f g®+m dS + 
l the 
right-hand side 
il = il(r, J?, cr, 
d, </>) as 
before, then we 
have 
dil _ 
dil 
dr 
dr ’ 
dil _ 
dil 
d\> 
dj? ’ 
dil 
dil 
d2 ~ 
da ’ 
dil 
(— cos 4> + cot </> 
^ . dil 
+ cosec cf> 
. dil 
. ~ . , dil 
d® ” 
cos $ sin d>) ^ 
cos o sm d> — 
dd 
sm o sm d> j— , 
Clip 
dil 
, , ■ n dil 
. . ~dil 
c< dil 
d2 — 
cot <6 sm o 
da 
+ cosec (p sm o 4- 
COS S -=-r , 
d<£ 
where on the left-hand side il = il (r, J?, 2, ®, d>).
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.