Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 3)

286 
A MEMOIR ON THE PROBLEM OF DISTURBED ELLIPTIC MOTION. 
[21_ 2 
which give 
. sin fdf-«»+a+<?«»/ *+1±£mf da= o, 
J J 1 — e 2 a 
e cos fdf+ 
and we thence obtain 
da = 
sin f de 
de + 
2e sin / 
i Vl — e 2 
\/l — e 2 dii 7 na 2 Vl — e 2 dii 7 
dtH ;—^ — dt, 
na dr 
1 — e 2 
2 ae 
da — 
e sin f d\> 
Vl — e 2 dii 
na 2 e d]> 
dt, 
dii 7 , 
-j— dt + 
dr 
2 (1 + e cos f) 2 dii ^ 
na 
(1-e 2 ) 1 d\> 
7 Vi - e 2 sin f dii 7 , e + 2 cos f+ e cos 2 f dii 7j 
de = -j-dt-i di, 
na a?' na 2 Vl - e 2 dj> 
17 nae dr 
(2 + e cos/) sin / dil 
na 2 Vl—e 2 d]> 
the last of which equations, combined with 
(1 + ecos/) 2 , (2±ecos/)sin/, 
n _ ■ + 1 -e ! ’ 
di, 
gives 
, _ (1 - e 2 ) (- 2e 4- cos/+ e cos 2 /) do , (2 + e cos/) sin/ dil , 
9 nae (1 + e cos/) dr f na 2 e d|? 
The fourth equation of the formulae for the variations, viz., d]> = 0, gives 0 = dvr + df, 
and therefore dix = — df, that is, 
d'nr = — 
Vl — e 2 cos/ dii ^ + (2 + e cos/) sin/ dil ^ 
nae 
di 
na 
2 Vl -1 
dji 
and the complete system becomes therefore 
da = 
2esin/ dQj, 
n Vl - e 2 ar 
2 (1 + e cos/) 2 did 
na (1 — e 2 )- cty 
di, 
de = 
V? = 
(for = 
Vl — e 2 sin/ dii ^ ^ e + 2 cos/+ e cos 2 / dii ^ 
na dr na 2 Vl-e 2 # 
di, 
(2 + e cos/) sin/ dii 
na 2 e d}> 
Vl — e 2 sin/ dii ^ + (2 4- e cos/) sin/ dii ^ 
(1 — e 2 ) (— 2e + cos/+ e cos 2 /) dii , 
?iae (1 4- e cos/) dr 
nae 
d? 
na'e 
dji
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.