Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 3)

212] 
A MEMOIR ON THE PROBLEM OF DISTURBED ELLIPTIC MOTION. 287 
(cos S' d<f>' + sin S' sin d6'), 
7 , — cot c70 7 , cosec <ï> dil 7 , 
c№ = 7 tv, dt , . -TT^dt- 
,2 Vi - e 2 dZ 
na 
d Ç - cot<1> * 
na' 2 V1 — e 2 
7 „ cosec <1> rfil 7l 
d© = — : jxdi 
wa 2 Vl — e 2 
na 
,2 VI - e 2 d© 
+ cosec $ (sin >8' d<f>' — cos /S' sin <// ¿20'), 
+ cot <3> (sin $' dcf)' — cos S' sin <f>' d6'), 
where, as before, il = il (r, p>, X, ©, <T). This is the first form of the expressions for 
the variations of the elements. 
But we may in the disturbing function il replace r, }), by their values in terms 
of a, e, g, and if on the right-hand side il has the last preceding value, we have 
m 
da 
di1 
di1 
dt1 
dil 
diI- 
da ' + U de+ + + + + 
cZct 
d© 
dil 
cZil 7 dil 7l dil 7V , dil 7 „ ¿il 7 , 
= —T- dr + “37 db + 7V dX -f 373 d© + 7 , d<J>, 
dr d]> J dX d© d4> 
where on the left-hand side il = il (a, e, g, w, X, ©, <1>); and the expressions for the 
differentials dr and d]?, are 
7 1— e 2 7 j., , aesin/, 
dr = — >aa—acos/ae+ ^ r■ dg, 
1 + e cos / 
and we have therefore 
(2 + e cos/) sin/ 
1 — e 2 
dil 
1 - e 2 dil 
da 
1 + e cos/ dr ’ 
dil _ 
de 
,dil 
— a cos/ + 
II 
G 
•ts re 
ae sin/ dil 
Vl _ e 2 dr 
dil 
dil 
cZ-zzr 
d]> ’ 
dil 
dil 
d®~ 
d<S>’ 
di1 
dil 
dX ” 
dX ’ 
tZil 
dil 
d©~ 
d© 5 
Vl— 
+ ecos f) 
(i-O* 
1 — e 2 iZ}? 5 
(1 + e cos/) 2 dil 
~(Ï - df ty ’ 
where on the left-hand side il = il (a, e, î/, w, X, ©, < T),
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.