212] A MEMOIR ON THE PROBLEM OF DISTURBED ELLIPTIC MOTION.
289
/ dCl 7,
d na 2 v 1 — e 2 = ^7 dt,
,, — cosec 6 £¿12 7 , cot <6 £¿12 7 /
dip = ;— r ^ at + ——-j - dt =
rca 2 vl - e 2 ?ia 2 VI - e 2 dz \
na
cot z £¿12 7 .
-rrdt),
,2 Vl - e 2 d(p
where 12 = 12 (r, 2, 0, 0).
a — e 2 )
Substituting in these equations for r, 0, the values — y and <D +/ we
obtain
da =
tie —
2e sin/ £¿12 2 (1 + e cos/) 2 £¿12 7
—-j—dt + — V- -y- ¿i,
w v 1 - e 2 m (1 - e 2 ) #
Vl
e 2 sin f dil e + 2 cos /+ e cos 2 / cZO ^
dr no? Vl -e 2 ^ ’
^ _ (1 — e 2 ) (— 2e 4- cos/4- e cos 2 /) £¿12 ^ (2 + e cos/) sin/ (¿12 ^
nae (1 4- e cos /) c?r %a 2 e dz ’
Vl — e 2 cos/ <ifl ^ i (2 + e cos/) sin/ £¿12
~!T—T, ~dz
riE = - - * v waj ~ dt + K ~ ' " ~:J-L ~ dt ^¿=~dt,
dr m 2 V 1-e 2 "
wae
na
2 Vl - e 2 d(f)
dcf) =
£¿6» =
cot (f) dil 7 cosec <f> £¿12
?ia 2 Vl — e 2 ^ wa 2 Vl — e 2 d6
cosec <jb c?il ^
na
2 Vl — e 2 £¿0
where 12 = 12 (r, 2, 0, </>), as before; and which is the first system for the variations
of the six elements, a, e, g, E, 6, <f).
But if in the disturbing function we replace r, z by their values, then if on
the left-hand side 12 = 12 (r, z, 6, $), as before, we find
1 — e 2 £¿12
£¿0
dr ’
1 + e cos / dr
r dil (2 4- e cos/) sin f di2 _ £¿12
~ acos f + rVe 2
(1 4- e cos/) 2 £¿12 _ £¿12
ae sin / £¿12
Vl -Z 2 dr
di2
dcf)
di2
dz
(¿12
dd
(1 - e 2 / dz dg’
_dil
d(f)
_ £¿12
£¿^3 ’
_ £¿12
“(¿0 ’
where on the right-hand side 12 = 11 (a, e, g, E, 0, </>).
C. III.
37