16
ON HANSENS LUNAR THEORY.
Consider the orbit as an ellipse, then putting
а, the mean distance,
,r . • /k (d/ + K)
n, the mean motion = a / ——r— ,
V a 3
e, the excentricity,
c, the mean anomaly at epoch,
co, the distance of perigee from node,
б, the longitude of node,
i, the inclination,
d>, the distance from node,
M*, the reduced distance from node, = L — 6,
U, the excentric anomaly,
f the true anomaly, =<!> — <«,
the elements of the orbit are a, e, c, co, 6, i, and we have from the theory of
elliptic motion,
nt + c = TJ —e sin U,
T1
in 1
in
ele
f— tan
V(1 — e 2 ) sin U
cos U — e
/i a (1 — e 2 )
r = a (1 — e cos U) =
' 1 + e cos ;
cos/'
Moreover i is the angle at the base of a right-angled spherical triangle, the base,
perpendicular, and hypothenuse of which are 'i r , A, <1>, hence
tan ^ = cos i tan <E> ,
sin A = sin i sin O ,
sin ^ = cot i tan A ,
cos = cos A cos
Considering the elements as constant, we have
dr _ nae sin f
dt V(1 — e 2 ) ’
df _ no? V(1 — e 2 )
dt r 2
_ no? V(1 — e~)
dt r 2
d'P _ cos i no? V(1 — e 2 )
dt cos 2 A r 2
dL _ cos i na? V(1 — e 2 )
dt cos 2 A r 2
no? V(1 - e?)