Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 3)

16 
ON HANSENS LUNAR THEORY. 
[163 
Now NP = L — d, or (supposing, as before, that the differentiations relate to t, only in 
so far as it enters through the variable elements) d'P = — dd, and thence dd = 5* di; 
smi 
we have also d<£> = — cos i dd. The equations containing and ~ give 
ctJu aA 
cos i d na 2 V(1 — e 2 ) — na 2 V(1 — e 2 ) sin i di 
„ dCl 1 
= n 2 a 3 -jf dt, 
dJu 
dd 
cos 'P sin i d na?\f( 1 — e 2 ) + na 2 V(1 — (?) (cos \P cos i di + sin 'P sin i dd) = n 2 a 3 ^ dt; 
or, expressing dd by means of di and reducing, the second of these equations becomes 
cos i 
sin i d na 2 V(1 — (?) + na 2 \/(l — e 2 ) 
di 
n 2 a z jx 
cos 2 A cos 2 'P cos ~ dA 
and combining this with the first of the two equations, and observing that 
cos 2 i 
cos 2 A cos 2 Mf 
i rv 2 n — 
+ sin 2 1 
we find 
d na 2 yYl — (?) = n 2 a z ( 
V 
di 
cos i 
cos 2 A 
cos 2 'P ’ 
dLl . T di1 
-ttf + sin i cos t 7 . 
dL dA 
na* 
V( 1 - e 2 ) 
. . T di1 . dil 
— sin % COS 2 V + COS l COS T -J— 
dL dA 
dt, 
dt. 
Now, considering il as a function of r, d, i, d>, then A, L are given as functions of 
d, i, <f> by the equations sin A = sin i sin <f>, tan 'P = cos i tan <1>, 'P = L — d, and after 
some simple reductions, 
<m 
dr 
<m 
dd 
dil 
dH 
dr’ 
dil 
dL’ 
dll , , / . . „ , T , dil . , 
-rr = tan $ -smi cos 2 t —¡^ + cos i cos \P 
di \ dL 
dil\ 
dA) , 
dil 
d<P 
cos i dil . . _ dil\ 
TT Tf d” Sin I COS x -j-jT ) j 
cos 2 A dL dA r 
whence also
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.