16
ON HANSENS LUNAR THEORY.
[163
Now NP = L — d, or (supposing, as before, that the differentiations relate to t, only in
so far as it enters through the variable elements) d'P = — dd, and thence dd = 5* di;
smi
we have also d<£> = — cos i dd. The equations containing and ~ give
ctJu aA
cos i d na 2 V(1 — e 2 ) — na 2 V(1 — e 2 ) sin i di
„ dCl 1
= n 2 a 3 -jf dt,
dJu
dd
cos 'P sin i d na?\f( 1 — e 2 ) + na 2 V(1 — (?) (cos \P cos i di + sin 'P sin i dd) = n 2 a 3 ^ dt;
or, expressing dd by means of di and reducing, the second of these equations becomes
cos i
sin i d na 2 V(1 — (?) + na 2 \/(l — e 2 )
di
n 2 a z jx
cos 2 A cos 2 'P cos ~ dA
and combining this with the first of the two equations, and observing that
cos 2 i
cos 2 A cos 2 Mf
i rv 2 n —
+ sin 2 1
we find
d na 2 yYl — (?) = n 2 a z (
V
di
cos i
cos 2 A
cos 2 'P ’
dLl . T di1
-ttf + sin i cos t 7 .
dL dA
na*
V( 1 - e 2 )
. . T di1 . dil
— sin % COS 2 V + COS l COS T -J—
dL dA
dt,
dt.
Now, considering il as a function of r, d, i, d>, then A, L are given as functions of
d, i, <f> by the equations sin A = sin i sin <f>, tan 'P = cos i tan <1>, 'P = L — d, and after
some simple reductions,
<m
dr
<m
dd
dil
dH
dr’
dil
dL’
dll , , / . . „ , T , dil . ,
-rr = tan $ -smi cos 2 t —¡^ + cos i cos \P
di \ dL
dil\
dA) ,
dil
d<P
cos i dil . . _ dil\
TT Tf d” Sin I COS x -j-jT ) j
cos 2 A dL dA r
whence also