21
[163
163]
ON HANSENS LUNAR THEORY.
rmed with
= ddt? q- da
le purpose
departure
t of v / in
)ns of the
receded
quantities
I i) may,
lifferential
and effecting the substitutions, and collecting the results,
d no? \/(l — e 2 ) = n 2 a 3 ^ dt,
dr
= 0,
d nae sin f
V(1 - e 2 )
= war
,<m
dr
dt,
di
do
na cot i íd£l 1 — cos i dCl
+
V(1 — e ¿ ) \dcr cos i d%
nacoti dfL 7 ,
dt,
dt,
V(1 — e 2 ) di
where il is considered as a function of r, v /} ©, a, i.
Instead of a, i we may introduce the new quantities p, q defined by the equations
P = sin i sin er,
q = sin i cos <7 ;
this gives sin 2 i — p 2 + q 2 , cr = tan -1 ~ and retaining in the formulas the sine and cosine
of i, to avoid the introduction of irrational functions of p 2 + q 2 , we have
d© = (1 — cos i) d6 = -—da = ——, C0S /. (qdp — pdq),
v ' cos% cosisnri
i. e.
d© =
qdp — pdq
cos i (1 + cos i) ’
which determines © by means of p and q. We have moreover
dp = sin i cos a do + cos i sin a- di,
dq = — sin i sin a do + cos i cos <7 di,
dCL sin o- dfl ^ cos o- dfl
dp cos i di sin i da ’
dCL cos a dfl sin a dfl
dq cos i di sin i da ’
from which equations and the foregoing values of di and da we find the values of
dp and dq; the other equations of the system remain unaltered, and we have
therefore
dVL
d na 2 a/(1 — e 2 ) = n 2 a 3 dt,
dr =0,
7 nae sin f
d W^)
= irar
dSl
dr
dt,