24
Consequently
T =
on hansen’s lunar theory.
p 2 d_ m 2 V( 1—e 2 ) 2pe sin <£ dX
na 2 \/(l—e 2 ) rfi p 2 + a(l-e 2 )df
[163
= — 2 -5
dip 2pe sin 0 dA
2pe sin 0 _P^ Tj'iP /f
a( 1 - e 2 ) u 'rca 2 V(1 - e 2 ) ' (i ’ }
d
dX
dt ’
om ^ u,/v X ^2 //1 o\
dt a (1 — e 2 ) dt na 2 V( 1 — e 2 ) äi >ia ^ e
2pesin $ n /v p-
H/ a t} ~ ^v(i - o n; ( ^’ ‘>5’
»_ ^ pe sin $ d\ pe sin
A ¿(T-» a(1 - e 2 ) H/ & *> “ F '& *>'
and substituting in these equations the values of
dip pesinó d\ , d ... .
■®-"S(W) dt aud s m
we find
T= ¡2 -cos(v — A) — 1 +
2p
a(l — e 2 )
cos (?;, — A) — 1
na dfl
V(1 — e 2 ) dv t i
+ 2- sin(v — A)
na dii
r
V(1 — e 2 ) c?r
— 211 ('¿T t) P es i n< fr n//>» x\ P 2
' } a (1 - e 2 ) A1 ' ( n«V(l - e 2 ) di
wa rfn p
B ~~ |r cos - x > - 1 +;^fh) ( cos “ x) ~ *)} V(T^) f - r sin <*' - X) V(T^j r §
+ n,(f, of^-r (?, 0,
ciA
which are Hansen’s values, except that in the coefficient of n' (£, t) has been re
placed by its value.
2, Stone Buildings, 31 si March, 1855.