476 A MEMOIR ON THE PROBLEM OF THE ROTATION OF A SOLID BODY. [217
I.
In the theory of elliptic motion, where the elements are
а, the mean distance,
e, the eccentricity,
g, the mean anomaly,
ct, the departure of pericentre,
б, the longitude of node,
a, the departure of node,
(f), the inclination,
and if, besides, we have
n, the mean motion (n 2 a 3 = sum of the masses),
and CL denote the disturbing function taken with Lagrange’s sign (CL = — R, if R be
the disturbing function of the Mécanique Céleste), then the formulae for the variations
of the elements are
dt,
da =
2
na
dC- 7.
-7— dt,
dg
de =
1 — e 2
na 2 e
%Ldt
dg
Vl — e 2 dCl
na 2 e dta
dg =
2
na
dCl ,
-7— dt
da
1 — e 2 dCl
na?e de
dsr =
Vl — e 2 dCl
na?e de
1
II
^5
cot
^dt-
da
cosec (f) dCl
na 2 Vl — e 2
na 2 Vl - e 2 dO
da —
COt (f)
~ dt
d(f>
na 2 V1 — e 2
dd =
cosec (p
7,
d<\> ’
na 2 V1 — e 2
dt,
’ dt,
where O = CL (a, e, g, tz, $, a, 6).
And if in these equations we write
h = — - (sum of the masses) = — n 2 a 2 ,