218] A THIRD MEMOIR ON THE PROBLEM OF DISTURBED ELLIPTIC MOTION.
507
To reduce these, we have in the first place
dT . dT
dr
dT
dr r
dT
dv
dT
= r(Q 2 + R 2 ),
dQ . n dR\
=r- R cos y, ^ = r>(Q d £ + R d “)=^ (- QB - RA sin y),
2 n dT n -pdR
= - r 2Q = r 2 R -j-
dy dy dy
The equations are thus reduced to
d 2 r ~ n 2 a?
r( Q. +Ä)+
= r 2 R(— sin y .V — B cos y).
dQ
dr ’
(r 2 cos y. R) +r 2 (QB + RA sin y) — ^ ,
dQ
) +^R{Any^ + B eoB y) =
and then substituting for Q, R their values, viz.
dy
Q =
dt
dv
+ A,
R = cosy ^ -Bsin y,
we
find
<Pr
dt 2
d
dt
dv'''
r B, Hs
+
n 2 a 3 dQ „
+ r> =* +ä ’
(r 2
dv
r 2 C0Vy Jt
dQ
dv
+ 33,
'(-S)
dt
where
+ r 2 cos y sin y
{dv A 2
\dt)
dQ ~
=W +6 '
2f = r (— ZA — 2B sin y cos + A 2 + B 2 sin 2 y) ,
dt
dt
23 = (r 2 B sin y cos y) + r 2 — A sin y cos y — — AB cos 2 y ^ ,
dv
+ r 2 (— (cos 2 y — sin 2 y) B^+B 2 sin y cos y j,
in which
a / r\ • # / dO . . #. dcp
A = cos (v — <7 ) sin cp + sm (v — cr ) ,
-r. • / • , / dO' . dtp'
B = sm (v — a) sm (p + cos (v — a ) ;
O', a, <p' being given functions of t such that da — cos cp' dO' = 0.
The foregoing equations of motion are rigorously accurate.
64—2