518 ON SOME FORMULAE RELATING TO THE VARIATION OF A PLANET’S ORBIT. [219
then co, T, <E>, are given in terms of cr — <r 0 , cf) 0 , cj); and we have, moreover, XG = 0 + AC
= 0 o + co + T, X 0 G = (x 0 + co; that is, the position of the travelling orbit X 0 X, and origin
of longitudes X 0 therein, are determined by
0 O + (o + r, the longitude of node,
cr 0 + « , the departure of node,
, the inclination.
Suppose that in reference to this travelling orbit and origin of longitudes therein,
we have
v', the longitude of planet,
y', the latitude of ditto,
viz., in the figure X 0 N=v' (and therefore BN = v' — 0 o ), PX—y'.
Moreover, BG + CM = BG + AM — AG = co +(v — 0) — (0» — 0 + (o + Y) = v — 0 O —Y, hence
the two equations are
cos y sin (v — 0 n — T) = cos y' sin (v' — 0 O ) — tan \ <3> cos w (sin y + sin y'),
COS y COS (v — 0 O — r) = COS y' COS (V' — 0 O ) + f an 2 ^ S ^ n w ( S ^ n y + s i n y')>
or, as they may also be written,
cos y sin (v — 6 0 — T) = cos (f>o sin (J? — cr 0 ) — tan £ cos co (sin y + sin y'),
cos y cos (v — 0 O — T) = cos (]? — cr 0 ) + tan ^ <I> sin <w (sin y + sin y'),
or, if we put s = sin y + sin y, then observing that sin y =■= sin cf> sin ty — a), sin y' =
sin </) 0 sin (J> — <r 0 ), these become
cos y sin (v — 0 O — T) = cos (f> 0 sin (J? — a- 0 ) — tan \ <J> . s cos co,
cos y cos (v — 0 O — T) = cos (}? — <r 0 ) + tan ^ . s sin w,
sin y {= sin </> sin (J? — cr)} = — sin (f>o sin (]? — cr 0 ) + s,
which are, in fact, Hansen’s formulae (16), p. 75, the letters corresponding as follows,
viz.,
v, ]?, y, a, cr 0 , 0, 00, (f), 00 , <j>, r, (O (supra) to
l, v, b, cr, h , 0, h , i , —k , 2y, T, co (Hansen).
where, of course, the correspondence </> 0 to — k, shows that these angles are measured
in a contrary direction. I had from Hansen’s equations expected that the above formulae
would have contained sin y — sin y in place of sin y + sin y'.
2, Stone Buildings, W. C., 4th Dec, 1860.