520
NOTE ON A THEOREM OE JACOBIS,
[220
d dr
d/tf'
_ __ rcos22/ (_) -r(^) +
'dy\ 2 n 2 a s _ dii
dt dt
d
.dt,
dt{ ri 0082 ÿ
d
where
il = m
dtfdt) + ^ aosysmy
vV 2 + r' 2 — 2rr' cos H
r 2 dr
_ cZfl
dr ’
_di2
~ dy ’
r cos H
or, since cos JT = cos y cos (v — v'), and the Sun is considered as moving in a circular
orbit (i.e. r' = a , v=n't), we have
il = m'
r cos y cos (r — nt)\
Vr 2 + a' 2 — 2m' cos y cos (v — n't)
so that il is a function of r, v, y and of t, which last quantity enters only in the
combination v — rit. Hence the complete differential coefficient of il is
d (il) _ d'il , di1
dt dt U dv ’
d'il
where —denotes, as usual, the differential coefficient in regard to the time, in so
far as it enters through the coordinates r, v, y of the disturbed body.
We have, as usual,
d dr 2 4- r 2 (cos 2 y dv 2 + dy 2 ) _ d'il
dt dt 2 dt ’
and, from the foregoing equation,
d'O _ d (il) , dii
dt dt 71 dv
d{&) /d
dt + dt
+ n' T , (r 2 cos 2 y^-l;
dv
dt
hence, substituting this value, transposing, and integrating, we have
'dr-
'dv\ 2 (dy
dv
+ r 2 •] COS 2 y \ -jj_ ) + ( ^7 ) f — n 'r 2 COS 2 y = il + C,
dt
which is Jacobi’s equation expressed in terms of the coordinates r, v, y.