564
ON LAMBERTS THEOREM FOR ELLIPTIC MOTION.
[222
Writing FQ — p, QF = a, and as before the exterior angle of inclination = 20, the
actual expressions for the various lines of the figure are easily found to be
%(p + o-) , = a,
GF = Gf= |- Vp 2 + <r 2 + 2pa cos 20, = a,
GQ = ^ Vp 2 + o' 2 — 2pa cos 20, = a',
CR = Vpcr , = b‘,
where CR (not shown in the figure) denotes the semi-diameter conjugate to GQ.
I _ e 2 = ^P°L s ; n 2 a
1 e ( p + a .y sm °>
cos^- P + LT^ cosg.^7 2 *,
sin F =
2 ae
a sin 20
2ae
. n a sin 20 . „ pa sin 20
, Sin Q= — , , sm G =' - 7 ,
2a 4a ae
where jP, (7, Q, denote the angles of the triangle FCQ, respectively,
EG = ^°~ cos 0, and therefore EH = —
p + o’ p + <r
QQ = -J C —2a',
p + cr
and, if for shortness A = *Jkpa (p + a — k), then
{EM, EN) = (A + ka cos 0),
p + c
so that
(FM, FN) = - {p (a + p) + k (a — p) ± 2A cos 0],
p -\- cr
2A
GM=GN = l(EM + EN) = -=±- t
p + cr
i(FM+FN) =
p + cr
{p(a + p) + k(cr-p)},
and moreover
(ecos u, e cos u) = K 0 " — p)(p + cr — 2k) + 4Acos 0],
(e sin u, e sin u') = —-— i ± + 2 (p + a - 2k) Vpa cos ,
(p + tr) 2 l v pa )