Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 3)

564 
ON LAMBERTS THEOREM FOR ELLIPTIC MOTION. 
[222 
Writing FQ — p, QF = a, and as before the exterior angle of inclination = 20, the 
actual expressions for the various lines of the figure are easily found to be 
%(p + o-) , = a, 
GF = Gf= |- Vp 2 + <r 2 + 2pa cos 20, = a, 
GQ = ^ Vp 2 + o' 2 — 2pa cos 20, = a', 
CR = Vpcr , = b‘, 
where CR (not shown in the figure) denotes the semi-diameter conjugate to GQ. 
I _ e 2 = ^P°L s ; n 2 a 
1 e ( p + a .y sm °> 
cos^- P + LT^ cosg.^7 2 *, 
sin F = 
2 ae 
a sin 20 
2ae 
. n a sin 20 . „ pa sin 20 
, Sin Q= — , , sm G =' - 7 , 
2a 4a ae 
where jP, (7, Q, denote the angles of the triangle FCQ, respectively, 
EG = ^°~ cos 0, and therefore EH = — 
p + o’ p + <r 
QQ = -J C —2a', 
p + cr 
and, if for shortness A = *Jkpa (p + a — k), then 
{EM, EN) = (A + ka cos 0), 
p + c 
so that 
(FM, FN) = - {p (a + p) + k (a — p) ± 2A cos 0], 
p -\- cr 
2A 
GM=GN = l(EM + EN) = -=±- t 
p + cr 
i(FM+FN) = 
p + cr 
{p(a + p) + k(cr-p)}, 
and moreover 
(ecos u, e cos u) = K 0 " — p)(p + cr — 2k) + 4Acos 0], 
(e sin u, e sin u') = —-— i ± + 2 (p + a - 2k) Vpa cos , 
(p + tr) 2 l v pa )
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.