222
222]
on Lambert’s theorem for elliptic motion.
565
the
so that
e cos u + e cos u =
(p + o- - 2k),
u — u' = 2 tan -1
e sin u — e sin u
2A
(p + o') 2
, _ 4 (er — p) A
(p + o') 2 /
pcr
4A (p + cr — 2k)
= sm _1 ——
Vpo- (p + o- — 2&) (p + cr) 2 V per
which is
if
, , • • / X 4 (p + er — 2k) A 4 (cr — p) A
w — u —(e sin u — e sin u) = sm -1 —A r/
(p + cr) 2 Vper (p + cr) 2 Vper
= c/> — </>' — (sin 0 — sin </>'),
1 - cos 0 ^ (FM + №+ ilfA) = ^-^y 2 {p (er +p) + &(<r - p) + 2A},
1 — cos <fi' = — (Ailf + AA—if A) = —yj {p (cr + p) + & (cr — p) — 2A}.
In fact we then have also
1 + COS (f)
1 + cos </>'
(J+ay i 0- ( a + P) ~ k O ~P) ~ 2A \>
(7~+ cr) 2 O + P) - k O - P) + 2A }>
and thence
sin | + ^ (Vp (p + cr — &) + V/kcr), sin | 0' = (Vp (p + cr — A;) — V&er),
cos \ c/> = (Vcr (p + cr — &) — V&p), cos | 9' = (Vcr (p + cr — &) + V&p),
whence
sm
sin
* = - 24 >+-
(cr — p) VA
^ = (7T^) 2 { V/5<r(p + tT “ 2A; )
V.
per
and therefore
• , • ,, 4(cr —p)VA
sm <p — sm <p = r
sin | (0 - f) =
(p + cr) 2 Vper ’
2JcA 1 ., N p + cr-2k
, COS £(4>-<£) = - : ,
(p + ff ) Vper
P + cr
and therefore
„:„/i j/x 4 (p + cr — 2&) A
0> + -)V^ ’
which verifies the formula.