Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 3)

222 
222] 
on Lambert’s theorem for elliptic motion. 
565 
the 
so that 
e cos u + e cos u = 
(p + o- - 2k), 
u — u' = 2 tan -1 
e sin u — e sin u 
2A 
(p + o') 2 
, _ 4 (er — p) A 
(p + o') 2 / 
pcr 
4A (p + cr — 2k) 
= sm _1 —— 
Vpo- (p + o- — 2&) (p + cr) 2 V per 
which is 
if 
, , • • / X 4 (p + er — 2k) A 4 (cr — p) A 
w — u —(e sin u — e sin u) = sm -1 —A r/ 
(p + cr) 2 Vper (p + cr) 2 Vper 
= c/> — </>' — (sin 0 — sin </>'), 
1 - cos 0 ^ (FM + №+ ilfA) = ^-^y 2 {p (er +p) + &(<r - p) + 2A}, 
1 — cos <fi' = — (Ailf + AA—if A) = —yj {p (cr + p) + & (cr — p) — 2A}. 
In fact we then have also 
1 + COS (f) 
1 + cos </>' 
(J+ay i 0- ( a + P) ~ k O ~P) ~ 2A \> 
(7~+ cr) 2 O + P) - k O - P) + 2A }> 
and thence 
sin | + ^ (Vp (p + cr — &) + V/kcr), sin | 0' = (Vp (p + cr — A;) — V&er), 
cos \ c/> = (Vcr (p + cr — &) — V&p), cos | 9' = (Vcr (p + cr — &) + V&p), 
whence 
sm 
sin 
* = - 24 >+- 
(cr — p) VA 
^ = (7T^) 2 { V/5<r(p + tT “ 2A; ) 
V. 
per 
and therefore 
• , • ,, 4(cr —p)VA 
sm <p — sm <p = r 
sin | (0 - f) = 
(p + cr) 2 Vper ’ 
2JcA 1 ., N p + cr-2k 
, COS £(4>-<£) = - : , 
(p + ff ) Vper 
P + cr 
and therefore 
„:„/i j/x 4 (p + cr — 2&) A 
0> + -)V^ ’ 
which verifies the formula.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.