Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 3)

[173 
63 
value 
3rences 
>o, the 
l\ is 
inde- 
is, and 
is, are 
ipsoids 
h = 0, 
173] on laplace’s method for the attraction of ellipsoids. 
where Ui is of the degree i in a, /3, y, and of the degree 2i in a, b, c. We have 
“ T + «» W + = + * + <*** (“ f + W § + 07 f) 
- (4i + 1 )(a 2 + b 2 + c 2 )“ 2l “t (a 2 a + b 2 /3 + c 2 y) Qi 
cl XTi cL Ui - cl U$ i / r\ \ tj- 
“ * +/3 ^ + ^ w +4(a + /3+7)£7i 
= (a* + ¥ + c 2 ) -2i— i (*§ + ^ + 7 s + i (« + 8 + 7) ft- 
Hence, putting in like manner 
0' 4- 1) (2i + 5) Qi+i = - (2i + f ) |(a 2 + 6 2 + c 2 ) (aa + &£ fr + c 7 
— (4% + 1) (a 2 a + 6 2 /3 + c 2, y) Q;j 
-(2i+l)( (t 2 + 6 2 + c 2 )(a 2 ^ i + / 3 2 ^ + 7 »^ i + l( £ < + ) 3 + 7)e i ), 
(* +1) (2» + 5) ft +1 = - (a* + 6 s + (?) |(2i + |) (aa ^ ^ ^ + 07 ^j-') 
+ (2i +1) («" tj + /3* ^ + 7* ^7 + è (« + fi + 7) «<)} + (» + f) (« +1) (<*» + W + 0=7) Qi, 
K:. 
d(3 1 dy 
from which the functions Qi may be calculated successively. 
We may, it is clear, write 
n.-^L I 
1 3 ’ 2 < 1.2.3..»5.7..2t + 3' 
and we shall then have 
(<** + V + o’) + < U + 8 ) (“In + b P W + in) 
+ <« + *)(*7§‘+*f ^f) 
where 
I proceed to show that 
+ (2i + 1) (a 4- /3 + 7) Ki = 0, 
1 
K 0 = 
V(a 2 + b 2 + c 2 ) ’ 
T _ ( d? Q d? d? y 
Ki= { a ds +/3 ® +7 ® 
V(a 2 + ò 2 + c 2 ) '
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.