[173
63
value
3rences
>o, the
l\ is
inde-
is, and
is, are
ipsoids
h = 0,
173] on laplace’s method for the attraction of ellipsoids.
where Ui is of the degree i in a, /3, y, and of the degree 2i in a, b, c. We have
“ T + «» W + = + * + <*** (“ f + W § + 07 f)
- (4i + 1 )(a 2 + b 2 + c 2 )“ 2l “t (a 2 a + b 2 /3 + c 2 y) Qi
cl XTi cL Ui - cl U$ i / r\ \ tj-
“ * +/3 ^ + ^ w +4(a + /3+7)£7i
= (a* + ¥ + c 2 ) -2i— i (*§ + ^ + 7 s + i (« + 8 + 7) ft-
Hence, putting in like manner
0' 4- 1) (2i + 5) Qi+i = - (2i + f ) |(a 2 + 6 2 + c 2 ) (aa + &£ fr + c 7
— (4% + 1) (a 2 a + 6 2 /3 + c 2, y) Q;j
-(2i+l)( (t 2 + 6 2 + c 2 )(a 2 ^ i + / 3 2 ^ + 7 »^ i + l( £ < + ) 3 + 7)e i ),
(* +1) (2» + 5) ft +1 = - (a* + 6 s + (?) |(2i + |) (aa ^ ^ ^ + 07 ^j-')
+ (2i +1) («" tj + /3* ^ + 7* ^7 + è (« + fi + 7) «<)} + (» + f) (« +1) (<*» + W + 0=7) Qi,
K:.
d(3 1 dy
from which the functions Qi may be calculated successively.
We may, it is clear, write
n.-^L I
1 3 ’ 2 < 1.2.3..»5.7..2t + 3'
and we shall then have
(<** + V + o’) + < U + 8 ) (“In + b P W + in)
+ <« + *)(*7§‘+*f ^f)
where
I proceed to show that
+ (2i + 1) (a 4- /3 + 7) Ki = 0,
1
K 0 =
V(a 2 + b 2 + c 2 ) ’
T _ ( d? Q d? d? y
Ki= { a ds +/3 ® +7 ®
V(a 2 + ò 2 + c 2 ) '