Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 5)

122 
ON DIFFERENTIAL EQUATIONS AND UMBILICI. 
[330 
or, what is the same thing, 
dx dv — du dv 
But 
where 
4- — — 0. 
x v — u v — u 
b (v 2 — 1) + 2 fv 
v — u = v 4— — — — 
V 
c (y 2 — 1) 4- 2gv c (v 2 -1)4- 2gv ’ 
V = v [c (v 2 — 1) + Zgv] +b‘ 2 (v — I) + 2fv 
= (6 + cv) (v 2 — 1) + 2 (/+ gv) v, 
and the differential equation takes thus the form 
dx dv — du [c (v- — 1) + 2gv] dv 
+ ■ 
x v — u 
0; 
and hence, writing 
and 
V=(b + cv) (v 2 —1)4-2 (/4- gv) v = c (v — a.) (v — /3) (v — y), 
c (v 2 —1)4- 2gv _ c (v 2 — 1) 4- 2gv 
V 
ABC 
= 1 1 
c {v — a) (v — /3) (v — 7) v — a v — /3 v — 7 ’ 
so that 
A = 
c (a 2 -1)4- 2ga 
c (a 2 - 1) 4- 2goc+ 2 {f+(b + g)u + ccL 2 } ’ 
with the like values for B and C—values which are such that A 4- B 4- C = 1 
integral equation is 
const. = x (v — u) (v — a)~ A (v — ¡3)~ B (v — y)~ c , 
or 
, substituting for v — u its value, = ——-, 
5 ’ c(v 2 -l) + 2gv 
But 
const. = x {c (v 2 — 1) 4- 2gv}~' (v — a) l ~ A (v — ¡3) l ~ B (v — 7) 1 ~ c . 
- (/+ gu) -*JU m 
v = 
b + cu 
if for shortness U=(b + cuf 4- (/4-gu) 2 , and thence 
2 _ 2 (/4- gu) 2 + (b + cu) 2 + 2 ( f+ gu) V U 
(b + cu? 
and 
c (v 2 — 1) 4- 2gv = 
2 (cf- bg) (/4- gu + 'dU) 
v — a 
(b 4- cu) 2 
_ — (/4- gti) — V U — a (b 4- cu) 
b 4- c u. 
, &c. 
,—the
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.