[330
330] ON DIFFERENTIAL EQUATIONS AND UMBILICI. 125
= 0, f— m; we
Putting for shortness
A = mx + Vn,
B = mot? + y 2 + x VD,
where it will be remembered that
□ = m 2 x 2 + y 2 ,
then we have
2mB = A 2 + (2m — 1) y 2 .
G
— i V 2 m — 1 ’
The integral equation may be written
h=P+QVU= U = AB™- 1 ;
and we have
U A + 1 ' B ~ VD ’
if
[A! , ^B'\
® = V □ + ( m -•
But we have
A' >/□ = mV□ + m 2 x + yp = mA 4-yj?,
Ay + VD)} 2w " T i
i?' Vn = (2m# + 2yp) VD 4- □ 4- x (m 2 x + yp)
= 2m 2 x 2 + y 2 + xyp 4- (2mx 4 2y/:>) V □
= H 2 4- pyx + 2VO,
and
1 2m
B ~ A 2 + (2m - 1) </ 2 ’
and the value of © thus is
mA+yp A‘-+py(x + 2an)
®- - A +(2m ¿m) A , + {2m -l)f
_ 1 n l(m4 + «/») [4* +(2m - 1);/ ! ] + (‘¿ill- - -2m)[A- + Ap,j(x + 2v'd)]),
A [A 2 + (2m-\)y 2 ] 1
where the expression in { } is
= (2m 2 — m) A (A 2 4- y 2 )
+ yp {A 2 4- (2m - 1) f + (2m 2 - 2m) A(x + 2VO)}.
Here the coefficient of is = (2m 2 - m) (¿ 2 + y 2 ); in fact we have identically
A 2 + y 2 - 2A VO =0,
and thence
(2m 2 - 3m 4- 1) (A 2 + y 2 )-% (2m -1) (m - 1) A VQ = 0,
that is
(2m 2 - m - 1) ^l 2 + (2m 2 - 3m + 1) y 2 - (2m — 2) A {A + (2m — 1) VD] = 0;
that is