Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 5)

198 
ON SKEW SURFACES, OTHERWISE SCROLLS. 
[339 
2a' = ß + ^a 2 — ^a + 18, 
2aa' = ß (- |a) - i a 3 + f a 2 — ip a + 58, 
2aV = ß* (- f) + ß (- fa 2 + 9a - if»-) + £ a 4 - § a 3 + if»- a 2 - 119a +198, 
2^. 2 = - 2AA' = i a 3 - | a 2 + ifi a - 30, 
2,A 3 = - 2A 2 A' = l a 4 - f a 3 + i|i a2 _ go« + 100, 
2AB 
2ABC= 
we then find 
ZA + 2a = ß — 8, 
2-4' + 2a = ß — 3a -f- 8, 
2AB -Zaß = /3 2 (— |) + /3 (fa 2 — 5a + p) — 4a 2 + 36a — 1.26, 
2 A A' - 2aa' =ß (-fa) + 9a-28, 
2J.5C+2a/37 = /3 2 (i)+/3 3 (- i a 2 + J^a-^) + /3(fa 4 -fa 3 + ^a 2 -ipa + pp) 
- a 4 + ^ a 3 - 162a 2 + a - 1210, 
2A 2 A' + 2a 2 a' = ß 2 (-£) + £(-§ a 2 + 9a - ifL) - 29a + 98; 
and then also 
2a(2J.+2a) = /3 2 +/3(— |a 2 +1 a— 26)+ 4a 2 —36a+144, 
(2^45—2a/3)+2a(2^4 +2a) =/3 2 (f) +/3( -fa- f ) + 18, 
{(2^5-2a/3)+2a(2A+2a)}(24'+2a')= 
+ 18, 
- (2^ + 2a)(2^U'-2aa / ) 
/3 3 (J) + /3 2 (-2a+i)+/3( fa 2 +4fa- 10) -54a+144, 
= /3 2 ( |a )+£( — 13a+ 28) + 72a-224, 
and 
2A*A' + 2a-a! = (ut supra) /3 2 ( —f) + /3(—§a 2 + 9a—ip) —29a+ 98; 
whence, adding the last three expressions, we find 
Weight = /3 3 (f ) + /3 2 (-fa+f)+£ (f a 2 + f a - p) - 11 a + 18; 
and for the order we have 
(2a) 2 - 2a/3 = /3 2 (|) + ß (— 1 a 2 + 4a — ff) + i a 4 - ff a 3 + if & a 2 - a +133 ;
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.