Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 5)

[341 
ON THE SEXTACTIC POINTS OF A PLANE CURVE. 231 
(J) 
h') 
the inverse 
and thence 
(3m -6)0 (O H) = (3m - 7) 0^ - 0^i, 
11= (5m 2 — 18m + 17) (4m — 9) Jac. (77, V ,77)77 
+ 2 (5m —9) (m-2) (4m —9) Jac. (77, V77, H) 
+ (m - 2) j(5m 2 - 18m + 17) 0^ + ^y ~ 0'P 1 J- = 0. 
22. Now 
^ = (Sl, 33, (S, g, @, 5', CJ, ^ = (2l', 33', (S', ©', B, C)\ 
and writing for shortness 
EV =(021,..\A’, B\ CJ, FV =(2lB', CT$dW, 033', 0(S'), 
^ = (021', ./p, B, G') 2 , ^ = (21'. .pi, B, 77$02i, 033, 0®), 
(we might, in a notation above explained, write 77+ = 7N/ —10+-, and in like 
manner E i F 1 = d s l r 1 u, Tk/r, = 10+p, then we have 
0+ = /i’g/ + 2^1, 0+, = /7+, + 27 7 +,. 
We have moreover 
Jac. (77, V H, H) = — 77+,, | joosi, Nos. 47 to 50. 
Jac. (77, V , H) H — — 77+, ) post, Nos. 51 to 53. 
23. The just-mentioned formulae give 
n = - (5m 2 - 18m + 17) (4m - 9) EV 
-2(5m - 9)(m - 2) (4m - 9) ■”^~ 1 
+ (m — 2) (5m 2 — 18m + 17) (77+ + 277+ ) 
(5m — 9) (m — l) 2 (m — 2) 
+ 
3m- 7 
(^i + 2FyJr 1 ), 
that is 
I I = — (3m — 7) (5m 2 — 18m + 17) 
+ 2 ( m — 2) (5m 2 — 18m +17) 
(5m — 9) (m — l) 2 (m — 2) 
3m-7 
2 (m — 1) (m — 2) (3m — 8) (5m — 9) 
3m- 7 
to 46),
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.