Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 5)

234 
ON THE SEXTACTIC POINTS OF A PLANE CURVE. 
[341 
the development of which in fact gives the last-mentioned result. But applying this 
formula to the calculation of Jac. (U, H, il^), then disregarding numerical factors, we 
have 
d x VL 0 = (yz — Pa?,. ,. Pyz — lx 2 ,. , SI 2 , 0, 0, (1 + 21 3 ), 0, 0) 
= — SP (yz — l 2 x 2 ) 
+ (1 + 21 3 ) (Pyz — laf) 
= (—l + P) (x 2 + 2lyz), = Sd x U; 
and in like manner d y £ljj — Sd y TJ, d z Clu — Sd z U, and therefore 
Jac. (U, H, n d ) = S Jac. (U, H, U) = 0, 
whence also 
Jac. (U, H, il n ) = 0 ; 
and the condition for a sextactic point assumes the more simple form, 
Jac. (U, H, ^) = 0. 
29. Now (former memoir, No. 32) we have 
^ = (2i, 23, e, & x h, d y H, d z Hy 
= (1 + 81 3 ) 2 (y 3 z 3 + z 3 a? + x a y 3 ) 
+ (— 91 6 ) (a? + y 3 + z 3 ) 2 
+ (— 21 — 5P — 20/ 7 ) (x 3 + y 3 + z 3 ) xyz 
+ (- 1 ol 2 - 781 5 + 12Z 8 ) x 2 y 2 z 2 , 
or observing that a? + y 3 + z 3 and xyz, and therefore the last three lines of the expression 
of are functions of U(= x 3 + y 3 + z 3 + Qlxyz) and H (= — l 2 (x 3 + y 3 + z 3 ) + (1 + 2£ 3 ) xyz), 
and consequently give rise to the term =0 in Jac. (U, H, d r ), we may write 
d 7 = (1 + Hi 3 ) 2 (y 3 z 3 + z 3 x 3 + spy 3 ). 
30. We have then, disregarding a constant factor, 
Jac. (U, H, d / ) = Jac. (a? + y 3 + z 3 , xyz, y 3 z 3 + z 3 x 3 + x 3 y 3 ), 
= a? , y 2 , z 2 
yz , zx , xy 
a? (y 3 + z 3 ), y 2 (z 3 + x 3 ), z 2 (a? + y 3 ) 
— x 3 (y 6 — z 3 ) + y 3 (z 3 — x 6 ) + z 3 (a? — y 3 ), 
— (y 3 — z 3 ) (z 3 — x 3 ) (x 3 — y 3 ),
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.