Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 5)

[341 
(a.v)#, 
341] ON THE SEXTACTIC POINTS OF A PLANE CURVE. 
But we have, former memoir, Nos. 21 and 25, 
d 2 H = -H<$>VH 
m — 1 m — 1 
?rH=- ( 3m ~ 6 > ^ _7) wii- ^ a, 
(m — 1)- (m — 1) (m — l) 2 
so that the foregoing expression becomes 
= (S^ f_(8m ~ 16)OT5ir+f&si;rvif 
- ( - 3m 6) (S ” 1 7) ffd>air+1 4 &3irv h — T iiair 
m — 1 m — 1 m — I 
— — (6m —12) tf 2 03>} 
A s 
+ № <? ■ V) H - m7.H\; 
or finally 
0 4 Udjl + 20 3 Ud,H + 20 2 Ud 3 H = 
7 ——{(— 6m 2 + 18m — 12) H 2 d<& + (— 17m 2 + 60m — 55) HQdH) 
(m — l) 4 1 
+ {(2m - 2) H (0 . V) H + (8m - 16) dH'V H) 
(m —l) 4t 
33. Calculation of dJJd 3 U. 
This is 
^ 4 
(m — 1) 
HdH. 
237 
Article Nos. 34 and 35.—The Jacobian Formula. 
34. In general, if P, Q, R, S be functions of the degrees p, q, r, s respectively, 
we have identically 
t-. /-* n „U = Q, 
pP, 
qQ, 
rR, 
sS 
d x P> 
dxQ, 
d x R, 
d x S 
d y P, 
d y Q, 
dyRy 
d y S 
dzP, 
d z Q, 
d z R, 
d z s 
or, what is the same thing, 
pP Jac. (Q, R, S) — qQ Jac. (R, S, P) + rR Jac. (S, P, Q) -- sS Jac. (P, Q, R) — 0.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.