Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 5)

242 
ON THE SEXTACTIC POINTS OF A PLANE CURVE. 
[341 
We thus obtain 
(da,. .][x, y, zf (21', . /$>,..) 
+ (a, . .Job, y, zf (21', . .Jda, ..) 
— 2 (21',. .Jax + hy+gz,. Jxda + ydb + zdc,..) 
(a, ..Jx, y, zf(dW, . .Ja,..) 
— (921', . .Jax + hy 4- gz, . .) 2 
2 (a, . .Job, y, zjdx, dy, dz) (21', . .Ja, ..) 
— 2 (21', .Jax + hy+gz, Jadx + hdy + gdz, .) 
= (<A, • -Joe, y, zf (321,. .Ja,..) 
— (021, . .Ja'x + h'y + g'z, . .f, 
= (da',. .Jx, y, zf (21,. .Ja',..) 
+ (a',. .Jx, y, s) 2 (21,. .Jda'..) 
— 2(21,..]£«.'#+ h'y+g'z, ..Jxda' + ydh' + 20#',..), 
= 2(a, ..Jx, y, zjdx, dy, dz)(21, ..Ja', ..) 
— 2 (21, .Ja'x + h'y + g'z,. .Ja'dx+h'dy+g'dz,..). 
45. If in these equations respectively we suppose as before that (a, b, c, f, g, h) 
are the second differential coefficients of a function U of the order to, and (a', b', c', f, g', h') 
the second differential coefficients of a function U' of the order to' ; and that (A, B, G), 
(A', B', O') are the first differential coefficients of these functions respectively, then 
after some easy reductions we have 
(to - 1) (to - 2) 0U(21',. .Ja,..) = to'(to' -1) U' (021,..]{a,..) 
+ to (to — 1) U (21', . .Jda,..) 
-2(m-l)(m-2)(W,..JA,B,GJdA,dB,dC) 
m(m—l)U(dA\. .Ja,..) 
-(m-lf(dA',..JA, B, Gf 
2 (to— 1)00(21', ..Ja,..) 
- 2 (to - 1) (21', . .JA, B, CJdA, dB, dC) 
~(m'-lf(d%..JA', B', C'f, 
(to'-1)(to'-2)dU'(21, ..Ja',..) 
+ to'(to' — 1) O'(2l,..#0a', ..) 
- 2(to'-1)(to'-2)(21,5', C'JdA',dB',dC') 
2 (to' — 1)00' (21, . Afa',..) 
- 2(to'- 1)(21,..JA', B', G'JdA', dB', 0(5'), 
equations which may be verified by remarking that their sum is 
to (to- 1) {0O(21', ..$«, ..)+U[(21', . .£0a, ..) + (021', . .Ja,..)]} 
- (to - l) 2 |02l', ..JA, B, Gf + (21', .JA, B, CJdA, dB, 00)} = to'(to'- 1) &c., 
viz., this is the derivative with d of the equation 
to (to — 1) U (21',. Ja,..) — (to — l) 2 (A', . .$yl, B, Gf — to' (to' — 1) &c. 
46. Taking now U'— H, and therefore to' = 3to —6; putting also U=0, 00=0, 
and writing as before 
№ = (021,..$4', B', C'f, 
№ =( 21 ,.JA', B', G'JdA', dB, 00'), 
E^ = (dW,.JA, B, Gf, 
F^=( 21', ..$4, 5, O#0A 05, 00), 
Oil = (021,. Ja',..), 
.Oil =( 2l,..$0a',..),
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.