244
ON THE SEXTAOTIC POINTS OF A PLANE CURVE.
[341
48. Now
Jac. ( U, H, d x H) — g ^ g J ac - ( U, xd x ll + yd y H + zd z H, d x H),
and the last-mentioned Jacobian is
= 3 X H Jac. (U, x, 3 x H) + d y H Jac. (U, y, d x H) + d z H Jac. {TJ, z, d x H)
+ y Jac. ( U, d y H, d x H) + z Jac. ( U, 3 Z H, 3 X H),
where the second line is
= — i/Jac. (U, d x H, d y H) + z Jac. {U, 3 Z H, d x H),
or writing (A', B', G') for the first differential coefficients and (a', b', c', /', g', h') for
the second differential coefficients of H, this is
y
A, B, G
A, B, G
a, h\ g'
9 > f> o'
h', b', f
a', h', g'
= B, C) + z(%, 33', 8X4, B, C).
The first line is
= A, B, C
A', B', O'
a!, h', g
A {Eg - C'h') + B {GW - A'g') + C {AW - B'a),
or reducing by the formulae,
(3m - 7) (A', B', C) = {a'x + h'y + g'z, h'x + b'y +fz, g'x +f'y + c'z),
= {A (- ®'y + $'*) + B (- %'y + S'*) + C (- G'y+S'*))
= 3^7 1_ÿ( ®'’ + S '’ B ’ °)1-
Hence we have
Jac. (U, H, d„H) = (l + gA^) {-y(@', S', 5. <7) + *($', S', s'$A b, 0)1
1- y (©'. S', G'$-4, B’ C)+Z(*'. S', g'$yl, 5. (7)) ;
(-*(«', &, ®'$A B, C)+x(®\ S', ®'$A B, 0)},
{-«($', S', S' B, C) + ÿ(5l', @'5^, B, C)).
1
3m — 7
and in like manner
Jac. ( U, H, d y H) = _ y
Jac. (¡7, H, 3 2 H) = 7