Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 5)

244 
ON THE SEXTAOTIC POINTS OF A PLANE CURVE. 
[341 
48. Now 
Jac. ( U, H, d x H) — g ^ g J ac - ( U, xd x ll + yd y H + zd z H, d x H), 
and the last-mentioned Jacobian is 
= 3 X H Jac. (U, x, 3 x H) + d y H Jac. (U, y, d x H) + d z H Jac. {TJ, z, d x H) 
+ y Jac. ( U, d y H, d x H) + z Jac. ( U, 3 Z H, 3 X H), 
where the second line is 
= — i/Jac. (U, d x H, d y H) + z Jac. {U, 3 Z H, d x H), 
or writing (A', B', G') for the first differential coefficients and (a', b', c', /', g', h') for 
the second differential coefficients of H, this is 
y 
A, B, G 
A, B, G 
a, h\ g' 
9 > f> o' 
h', b', f 
a', h', g' 
= B, C) + z(%, 33', 8X4, B, C). 
The first line is 
= A, B, C 
A', B', O' 
a!, h', g 
A {Eg - C'h') + B {GW - A'g') + C {AW - B'a), 
or reducing by the formulae, 
(3m - 7) (A', B', C) = {a'x + h'y + g'z, h'x + b'y +fz, g'x +f'y + c'z), 
= {A (- ®'y + $'*) + B (- %'y + S'*) + C (- G'y+S'*)) 
= 3^7 1_ÿ( ®'’ + S '’ B ’ °)1- 
Hence we have 
Jac. (U, H, d„H) = (l + gA^) {-y(@', S', 5. <7) + *($', S', s'$A b, 0)1 
1- y (©'. S', G'$-4, B’ C)+Z(*'. S', g'$yl, 5. (7)) ; 
(-*(«', &, ®'$A B, C)+x(®\ S', ®'$A B, 0)}, 
{-«($', S', S' B, C) + ÿ(5l', @'5^, B, C)). 
1 
3m — 7 
and in like manner 
Jac. ( U, H, d y H) = _ y 
Jac. (¡7, H, 3 2 H) = 7
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.