341]
ON THE SEXTACTIC POINTS OF A PLANE CURVE.
245
49. We thence have
1
Jac. (U, H, VE) =
3m-7
(2l,£,@$x, g, *),($, 8,8$x, 9, »),(©, 8, g, *)
(21', @XA, 5,0), (£', 33', ST&l, 5, a), (©', g', 5, O
or multiplying the two sides by
H, =
the right-hand side is
3m — 7
EX
X
a, h, g
K b, f
9f, g
Eg ,
Y ,
Hv
Z
(:m—l)A, (m —1)5, (m — 1) G,
which is
= E
m — 1
3?/z — 7
A. , /4 , v
X y F, Z
4, 5, 0,
if for a moment
X — (21', ..$4, 5, C$a, h, g),
F= $4, 5, (7$/q b,f),
Z %A t 5, C%,/, c).
50. Hence observing that these equations may be written
X = (2T,. .-&A, B, C$d x A, d x B, d x C),
Y = (21', ..$-4, 5, O$0^, d y B, d y C),
Z ={W,..\A, B, G\d z A, d z B, d z G),
and that we have
0 =
g, v
d x , dy, d z
A, B, G,
we obtain for H Jac. (U, H, V, H) the value
= H
m — 1
3m — 7
(21', ...£4, B, G\dA, 05, 0(7),
or throwing out the factor E, we have the required result.