Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 5)

246 ON THE SEXTACTIC POINTS OF A PLANE CURVE. [341 
Article Nos. 51 to 53.—Proof of identity used in the fourth transformation, viz. 
Jac.(U, V, H)H=-EV, or say Jac. {U, H, V)tf = (02l, B', CJ. 
51. We have 
V = ((Si, @,£X, ft v), (§, 8, ft, v), (@, g, ft v)ldz, d„ a,), 
and thence 
0*- V =((9*21, 0*4?, 0z@$X, y, V), (0*4?, 0«;23, 0*5$X, y, V), (0*@, d x %, d x (f$\, fji, v)Jd x , dy, d z ), 
and 
(0*. V)H = ((0*21, 0*4?, 0*®][X, /a, v), (03,4?, 0*23, 0*5#X, /A, v), (0*@, 0*5, 0*@#X, /a, v)\A\B', C'), 
with the like values for (d y . V) H and (d z . V) H. And then 
Jac. (17, H, V)iT = 
A , B , C 
A' , B' , O' 
(0*.V)i7, (d y .V)H, (0 2 . V)H, 
in which the coefficient of A’ 2 is 
= (Cdy-Bd z ) (21, £, @$X, /A, *); 
or putting for shortness 
(Cd y -Bd 2 , A02-<70*, P0*-A0j,) = (P, Q, A); 
the coefficient is 
52. We have 
(P21, P4?, P©#X, /A, *,). 
0 = (PX + Qy + ifo), 
and thence 
coefficient A' 2 — 021 = (P21, P4?, P@£x, /a, *) - (P2(, Q2i, P21&X, /a, *) 
= ft 81) 
+ V {(Cdy - Bd z ) <8-(Bdz- 5IS„) aj, 
where coefficient of fi is 
= - Ad£\ — Bd z $ + C (0*21 + 01,4?) 
and coefficient of v is 
= - (A0*2[ + Bd£ + G®*®) = - ^-=-- xd z H, 
= + (Ad y 9t + Bdy$ + Cdy®)= ^ x xdyll, 
so that 
coefficient A' 2 — 021 = — x (ud,H — vd v H). 
to — 1
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.