Full text: The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., sadlerian professor of pure mathematics in the University of Cambridge (Vol. 5)

ON THE SEXTACTIC POINTS OF A PLANE CURVE. 
251 
341] 
and then 
(m - 1) (G'dy - B'd z ) = A [(£« - %)d y - {%z - ®x)-d z ] 
+ [(33« - §y) dy - ($z - %x ) d z ] 
+ v [($« - ©2/) dy - (®z - ©«) d z ] 
= \[x (31, ®^d x , dy, d z ) - 31 (xd x + ydy + zd z )] 
+ P [ x (*£>> 53, % ~§d x , dy, d z ) - £> (xd x + ydy + zd z )\ 
+ r [« (®, % , © ~$d x , dy, d z ) - © (xd x + ydy + zd z )] 
— .«(31, y, v^d x , dy, d z ) - (3t, @]£A, y, v) (xd x + ydy + zd z ) ; 
that is 
and so 
whence 
or finally 
(m — l)(C'dy — B'd z ) = «V —(31, «£), @$\ fi, v)(xd x + yd y + zd z ), 
(m — 1) (A'd z — C'd x ) = y V — (£, 33, % $A, ¡x, v) (xd x 4- yd y 4- zd z ), 
(m — 1) (B'd x — A'dy) = z V - (©, $ , © ¡x, v) (xd x 4- yd y 4- zd z ) ; 
(m — 1) d 2 = (X« + /xy + vz) V — (31, ./x, vf (xd x 4- yd y 4- zd z ), 
= ^ V - d> (xd x + ydy 4- zd 2 ) ; 
d2 = ~^~l^^ dx + ^ + ^ + ^l V - 
63. This leads to the expression for do-U; we have 
0o 2 = 
/■ —1)2 (tôx + ydy + zd z y 
2^ 
- / m _ 1 y 2 $ v (®d x + ydy 4- zd z ) 
+ —V 2 - 
+ (m-l) 2 ’ 
and operating herewith on U, we find 
u= m(m 
(m — 1 ) 2 
-*$£$** u 
32—2
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.